Как проверить все стабилизируещие приборы напряжения мультиметром. Варианты проверки стабилитрона мультиметром Как проверить диод мультиметром

В данной статье объясним как проверить диод мультиметром . Полупроводниковый диод, как компонент электронной схемы, довольно часто выходит из строя по различным причинам, например, превышение максимально допустимого прямого тока, обратного напряжения и тому подобное. Различают два вида неисправности диода – пробой и короткое замыкание.

Действие диода, как полупроводникового прибора с p-n переходом, заключается в том, что он пропускает электрический ток только в одном направлении (от анода к катоду), в обратном же направлении (от катода к аноду) ток не течет.

Зная это свойство диода можно легко проверить его на неисправность при помощи обычного .

Обычные диоды, так же как и стабилитроны, можно проверить с помощью мультиметра. Чтобы проверить этот полупроводниковый прибор с помощью цифрового мультиметра, установите переключатель мультиметра в режим проверки диодов, обычно данный режим имеет значок диода:

Следует отметить, что при проверке в данном режиме, на мультиметре отображается прямое напряжение, а не сопротивление, когда просто прозванивают диод в режиме сопротивления.

Признаки исправного диода:

  • При подключении плюсового щупа (красный) мультиметра к аноду диода, а минусового щупа (черный) к катоду диода на экране мультиметра должна высветиться определенная величина прямого напряжения данного диода. У разных типов диодов прямое напряжение отличается. Так у германиевых диодов оно составляет примерно 0,3…0,7 вольт, у кремниевых диодов 0,7…1,0 вольта. Хотя некоторые типы мультиметров могут показывать более низкое значение прямого напряжения в режиме проверки.

  • И на оборот, при подключении минусового щупа мультиметра к аноду диода, а плюсового щупа к катоду диода на экране будет ноль.

При иных показаниях мультиметра можно утверждать о неисправности проверяемого диода.

Альтернативный способ проверки исправности диода

В том случае, если у вас мультиметр не снабжен режимом проверки диодов, то проверить диод можно по простой схеме, которая приведена ниже.

При данной проверке, мультимет необходимо перевести в режим измерения постоянного напряжения. При том подключении исправного диода, как указано на схеме, вольтметр покажет прямое напряжение на диоде. Если теперь выводы диода поменять местами, то он не будет проводить ток, а вольтметр укажет напряжение питания (в данном случае 5 вольт).

Так же можно прозвонить диод и определить его общее состояние путем измерения сопротивления, как в прямом, так и в обратном направлении.

Для этого необходимо перевести мультиметр в режим измерения сопротивления, диапазон до 2 кОм. При подключении диода в прямом направлении (красный к аноду, черный к катоду) измерительный прибор покажет сопротивление несколько сотен Ом, в обратном направлении прибор покажет символ разрыва цепи, что говорит об очень большом сопротивлении.

Как проверить диодный мост

Прежде чем перейти к вопросу проверки диодного моста, вкратце приведем его описание. Диодный мост представляет собой сборку из четырех диодов, соединенных таким образом, что переменное напряжение (AC), подаваемое к двум из четырех выводов диодного моста, переходит в постоянное напряжение (DC) снимаемое с двух других его выводов.

Таким образом, предназначение диодного моста – выпрямление переменного напряжения с целью получения постоянного напряжения.

Диодный (выпрямительный) мост представляет собой четыре выпрямительных диода соединенных по определенной схеме:

Поскольку диодный мост предназначен для выпрямления переменного напряжения (синусоиды), то при первой полуволне переменного напряжения в работе участвуют одна пара диодов:

а при следующей полуволне работает другая пара выпрямительных диодов:

Проверка диодного моста ничем не отличается от проверки обычного диода. Просто необходимо определиться, к каким выводам подключать мультиметр. Условно пронумеруем выводы выпрямителя от 1 до 4:

Отсюда следует, что для проверки диодного моста нам достаточно прозвонить 4 диода:

  • 1-й: выводы 1 – 2;
  • 2-й: выводы 2 – 3;
  • 3-й: выводы 1 – 4;
  • 4-й: выводы 4 – 3;

При проверке, необходимо руководствоваться на показания мультиметра, как и при проверке обычных диодов.

Всего несколько часов потребуется, чтобы изготовить это устройство. Оно предназначено для проверки исправности. определения цоколевки и напряжения стабилизации стабилитронов. Но с его помощью можно проверять и другие полупроводниковые приборы, например, определить напряжение пробоя эмиттерного перехода транзистора, которые иногда используются в качестве стабилитронов.

Как проверить стабилитрон

И так, как же проверить стабилитрон? При проверке не ставилась задача определять зависимость напряжения стабилизации от протекающего тока. Схема устройства показана на рис. 1. В его состав входят повышающий преобразователь напряжения, собранный на микросхеме DD1 и транзисторе VT1, а также специализированный модуль F08508G. В Интернете этот модуль (рис. 2) позиционируется как тестер аккумуляторной батареи автомобиля и представляет собой трехразрядный измеритель напряжения с цифровым светодиодным индикатором. Он позволяет измерять постоянное напряжение до 99,9 В

На логических элементах DD1.1 - DD1.3 собран генератор импульсов, элемент DD1.4 - буферный. Частоту задают параметры элементов С2 и R1, и для указанных на схеме она - примерно 9 кГц. Импульсы с его выхода через резистор R2 поступают на базу транзистора VT1, который работает в ключевом режиме. Когда он открыт, через дроссель L1 протекает ток и энергия накапливается в его магнитном поле.

Когда транзистор закрывается, на коллекторе возникает ЭДС самоиндукции и формируется импульс напряжения амплитудой около 60 В, который затем выпрямляется диодом VD1, и конденсатор СЗ заряжается до этого напряжения. Через токоограничивающий резистор R3 это напряжение поступает на испытываемый стабилитрон и на вход модуля. С помощью переключателя SA2 изменяют полярность напряжения на стабилитроне, но не на входе модуля.
Снимая показания с индикатора модуля, можно определить напряжение стабилизации и цоколёвку стабилитрона.

Печатная плата устройсто для проверки стабилитронов

При этом следует учесть, что, если стабилитрон обычный, в его состав входит один p-n переход (VD1 на рис. 3). Поэтому при напряжении обратной полярности (плюс - на катод, минус - на анод) будет индицироваться напряжение пробоя, для стабилитрона это и есть напряжение стабилизации. При смене полярности на р-n переходе будет прямое напряжение, если он кремниевый, то это около 0,6 В. Если стабилитрон симметричный (VD2 рис. 2), при смене полярности напряжение стабилизации меняется незначительно. Но есть еще и так называемые термокомпенсированные стабилитроны, в состав которых входит дополнительный диод (VD3 на рис. 3).

В этом случае при одной полярности подключения на вход модуля А1 поступит напряжение стабилизации, а при другой - выходное напряжение преобразователя. Генератор импульсов можно собрать и на других микросхемах, фрагменты схемы устройства в случае применения микросхем К561ЛН2 и К561ЛА7 (К561ЛЕ5) показаны на рис. 4 и рис. 5 соответственно.
Элементы устройства смонтированы на макетной плате (рис. 6) с использованием проводного монтажа. Применён резистор МЛТ, С223, оксидные конденсаторы - импортные, конденсатор С2 - К1017. Транзистор - любой из серий КТ815 и КТ817. Выключатель питания и переключатель - малогабаритные любого типа. Дроссель - штатный дроссель от КЛЛ, который намотан на Ш-образном ферритовом магнитопроводе (рис. 7).

Обычная индуктивность таких дросселей - несколько миллигенри. Для подключения исследуемых приборов можно использовать зажимы «крокодил» (XS1, XS2). Взамен модуля можно применить цифровой мультиметр в режиме измерения постоянного напряжения. Налаживание сводится к изменению частоты генератора для получения выходного напряжения (без нагрузки) около 60 В. Сделать это можно подборкой конденсатора С2 (увеличивая или уменьшая ёмкость) или резистора R1 (только в сторону увеличения сопротивления). Питается устройство от батареи 6F22 (Крона), максимальный потребляемый ток - 38 мА.


Современные цифровые мультиметры позволяют радиолюбителю измерять сопротивление резистора, ёмкость конденсатора, величину индуктивности, частоту сигнала, температуру объекта, а чтобы напряжение стабилизации стабилитрона – мне такие не встречались. А в распоряжении радиолюбителя их, стабилитронов, имеется много и разных. В металлическом, стеклянном, пластмассовом корпусах, иногда с нечитаемыми надписями. Как отличить стабилитрон от диода, особенно в стеклянном корпусе? (Фото1).

Особенно важно знать напряжение стабилизации стабилитрона Uст. Во многих случаях напряжение пробоя кремниевого стабилитрона можно узнать из технической документации или просто определить из его названия. Например, если на корпусе стабилитрона надпись BZX79 5V6, то это означает, что он имеет напряжение стабилизации 5,6 В и принадлежит к семейству BZX. Но с другой стороны, когда наименование стабилитрона неизвестно (стёрлись надписи) или необходимо проверить его работоспособность - как быть? В этом случае необходимо иметь под рукой приставку к мультиметру, которая поможет определить напряжение стабилизации и отличить диод от стабилитрона.
Как работает стабилитрон? Стабилитрон - это такой диод, который в отличие от обычного выпрямительного диода при достижении определённого значения обратно приложенного напряжения (напряжения стабилизации) пропускает ток в обратном направлении, а при его дальнейшем повышении, уменьшая своё внутреннее сопротивление, стремится удержать это напряжение на определённом уровне. Посмотрим на его вольтамперную характеристику (Рис.1б).

Рис.1а               Рис.1б

На вольтамперной характеристике (ВАХ) стабилитрона режим стабилизации напряжения изображён в отрицательной области приложенного напряжения и тока. По мере увеличения обратного напряжения стабилитрон сначала «сопротивляется» и ток, протекающий через него, минимален. При определённом напряжении ток стабилитрона начинает увеличиваться. Достигается такая точка (точка1 на ВАХ), после которой дальнейшее увеличение напряжения на делителе «резистор-стабилитрон» не вызывает увеличения напряжения на p-n переходе стабилитрона. На этом участке ВАХ происходит увеличение напряжения лишь на резисторе (рис.1а). Ток, проходящий через резистор и стабилитрон, продолжает расти. От точки 1, соответствующей минимальному току ста-билизации, до определённой точки 2 вольтамперной характеристики, соответствующей максимальному току стабилизации, стабилитрон работает в требуемом режиме стабилизации (зелёный участок ВАХ). После точки 2 стабилитрон начинает греться и может выйти из строя. Участок между точками 1 и 2 является рабочим участком стабилизации, на котором стабилитрон выступает в качестве регулятора. Производители ста-билитронов всегда указывают напряжение стабилизации при некотором токе (5...15мА). В предлагаемой приставке используется такая же величина тока при измерении напряжения стабилизации.
Радиолюбитель, имеющий регулируемый источник питания, может вос-пользоваться простым пробником для определения напряжения стабили-зации. Схема приведена на рис.2. На микросхемном стабилизаторе LM317 выполнен стабилизатор тока. Ток можно установить 5 или 15мА. Если использовать LM317AHV (входное напряжение 52В максимальное), то можно измерять напряжение стабилизации до 48В, а с LM317 - до 35В.

Схема мобильной приставки для измерения напряжения стабилизации приведена на рис.3.

Основа схемы - специализированная микросхема МС34063, которая представляет собой схему управления DC/DC-преобразователем. Данная микросхема специально разработана для применения в повышающих, понижающих и инвертирующих преобразователях с минимальным количеством элементов. Напряжение на выходе, получаемое повышающим преобразователем, определяется двумя резисторами R2 и R4. Расчёт номиналов резисторов можно выполнить с помощью онлайн-калькулятора, размещённого на сайте «Радиоактив».

Для сборки схемы нам потребуются:
Резисторы: R1 - 180 Om; R2 - 56k; R3 - 9,1 Om; R4 - 1k6; R5 - 22 Om.
Конденсаторы: C1 - 330p; C2 - 470mk*16V; C3 - 10mk*100V.
Индуктивность - 1900 мкГ. Диоды Шоттки - 1N5819, 2 шт.
Микросхема - МС34063 в корпусе DIL 8. Установлена на панельку.
Микросхема - LM334Z в корпусе ТО-92 (стабилизатор тока).

Печатная плата, рис.4

Внешний вид собранного устройства можно посмотреть на фото 2, 3.

Всё смонтировано на печатной плате. Для подключения к мультиметру использована вилка от зарядного устройства, соответствующим образом доработанная для этой цели. Источник питания - 3 элемента ААА, соединённые последовательно, итого 4,5В. Элементы питания размещены в боксе, закреплённом на плате. Включение питания осуществляется малогабаритной кнопкой. Индуктивность намотана на пластмассовой катушке размерами: внешний диаметр - 15мм, внутренний - 5мм, расстояние между щёчками - 15мм. Провод ПЭЛ, ПЭВ диаметром 0,2мм, наматываем до заполнения. У меня измеренная величина индуктивности получилась 2000мкГ. Если нет микросхемы LM334Z, то её можно исключить и вместо этого вставить резистор 15к между катодом VD2 и выводом VDC, тогда резистор 22 Ом тоже не нужен.
Когда всё установили на плату, проверили монтаж, можно приступать к проверке работоспособности приставки. Сразу скажу, у меня схема заработала с первого раза. Но обо всём по порядку. Не вставляя микросхему в панельку, проверяем напряжение в гнёздах панельки, естественно, подключив источник питания. На 6 выводе должно быть напряжение питания, на выводах 7,8,1 – чуть меньше. Отключаем питание и, если всё нормально, устанавливаем микросхему на место. Включаем питание и измеряем потребляемый ток без нагрузки. При напряжении 9,4В величина тока составила 10,6 мА, а при 4,9В - 26,5 мА. Теперь можно проверить величину напряжения на выходе приставки. Для этого вставляем вилку с платой в гнёзда мультиметра, вот как на фото 4.

На мультиметре выставляем предел 200В постоянного напряжения, нажимаем кнопку S1 и считываем показания вольтметра. При напряжении источника питания 4,5В величина выходного постоянного напряжения составила 33,8 В. Ток в измерительной цепи - 10мА. При 9В выходное напряжение уменьшилось до 21,8В, т.е. надо пересчитать номиналы резисторов R2 и R4, чтобы увеличить выходное напряжение. С целью увеличения выходного напряжения резистор R2 был заменён переменным, чтобы увидеть как будет изменяться напряжение при его регулировке. При сопротивлении 120к напряжение возросло до 44В (Uпит.-4,5В), и до 34В при 9В Uпит. При регулировке резистором R4 наблюдалось только изменение напряжения от 40 до 44В. В итоге с помощью этой приставки мы можем измерять напряжение стабилизации стабилитронов до 40В.
Переходим к выполнению измерений:
- подсоединяем приставку к мультиметру, выбираем предел измерения 200В (постоянное);
- проверяем наличие напряжения на выходе приставки, нажав кратковремен-но кнопку S1;
- подключаем стабилитрон к зажимам, как на фото 5, нажимаем S1 и считы-ваем показания;

При подключении несимметричного стабилитрона анодом к «+», а катодом «-» мультиметр покажет минимальное напряжение (0,3…0,6В). При изменении полярности подключения- катодом к «+», а анодом к «-», мультиметр покажет напряжение стабилизации, если оно ниже 44В. В нашем случае соответственно 0,7В и 14,6В. Напряжение стабилизации проверенного стабилитрона 14,6В (фото 6);

Естественно, захотелось убедиться, а точно ли измеряет приставка. Этот же стабилитрон был проверен в радиомастерской на промышленном испытателе Л2-54. Оказалось, что показания прибора и приставки почти совпадают (0,5В и 14,7В на приборе). Вполне удовлетворительно для самодельного устройства.
- при подключении симметричного стабилитрона (КС162А) напряжение стабилизации составило 6,2В при любой полярности;
- подключение динистора DB3 при любой полярности показало напряжение пробоя 29,5В;
- диод при одной полярности показал минимальное напряжение, при обратной - выходное напряжение приставки – 44В;
- транзистор в роли стабилитрона выдал такие результаты: КТ315Б,Е - 7,3В; S9014 - 9В.
  Перед тем, как устанавливать радиоэлемент в приставку для проведения измерений, проверьте его на отсутствие обрыва или короткого замыкания внутри корпуса, чтобы избежать лишних вопросов.
  Высоковольтные стабилитроны этим устройством не проверить, требует-ся более высокое напряжение. Со временем рассмотрим и такое устройство.
  Если приставку оформить в подходящий корпус, то её можно брать с собой на радиорынок, чтобы оградить себя от недобросовестных продавцов, покупая стабилитроны.

Скачать схему: (cкачиваний: 965)
Скачать печатную плату: (cкачиваний: 933)

Чтобы определить исправность диода можно воспользоваться приведённой далее методикой его проверки цифровым мультиметром.

Но для начала вспомним, что представляет собой полупроводниковый диод.

Полупроводниковый диод – это электронный прибор, который обладает свойством однонаправленной проводимости.

У диода имеется два вывода. Один называется катодом, он является отрицательным. Другой вывод – анод. Он является положительным.

На физическом уровне диод представляет собой один p-n переход.

Напомню, что у полупроводниковых приборов p-n переходов может быть несколько. Например, у динистора их три! А полупроводниковый диод, по сути является самым простым электронным прибором на основе всего лишь одного p-n перехода.

Запомним, что рабочие свойства диода проявляются только при прямом включении. Что значит прямое включение? А это означает, что к выводу анода приложено положительное напряжение (+ ), а к катоду – отрицательное, т.е. (- ). В таком случае диод открывается и через его p-n переход начинает течь ток .

При обратном включении, когда к аноду приложено отрицательное напряжение (- ), а к катоду положительное (+ ), то диод закрыт и не пропускает ток .

Так будет продолжаться до тех пор, пока напряжение на обратно включённом диоде не достигнет критического, после которого происходит повреждение полупроводникового кристалла. В этом и заключается основное свойство диода – односторонняя проводимость.

У подавляющего большинства современных цифровых мультиметров (тестеров) в функционале присутствует возможность проверки диода. Эту функцию также можно использовать для проверки биполярных транзисторов . Обозначается она в виде условного обозначения диода рядом с разметкой переключателя режимов мультиметра.

Небольшое примечание! Стоит понимать, что при проверке диодов в прямом включении на дисплее показывается не сопротивление перехода, как многие думают, а его пороговое напряжение ! Его ещё называют падением напряжения на p-n переходе . Это напряжение, при превышении которого p-n переход полностью открывается и начинает пропускать ток. Если проводить аналогию, то это величина усилия, направленного на то, чтобы открыть "дверь" для электронов. Это напряжение лежит в пределах 100 – 1000 милливольт (mV). Его то и показывает дисплей прибора.

В обратном включении, когда к аноду подключен минусовой (- ) вывод тестера, а к катоду плюсовой (+ ), то на дисплее не должно показываться никаких значений. Это свидетельствует о том, что переход исправен и в обратном направлении ток не пропускает.

В документации (даташитах) на импортные диоды пороговое напряжение именуется как Forward Voltage Drop (сокращённо V f ), что дословно переводится как "падение напряжения в прямом включении ".

Само по себе падение напряжения на p-n переходе нежелательно. Если помножить протекающий через диод ток (прямой ток) на величину падения напряжения, то мы получим ни что иное, как мощность рассеивания – ту мощность, которая бесполезно расходуется на нагрев элемента.

Узнать подробнее о параметрах диода можно .

Проверка диода.

Чтобы было более наглядно, проведём проверку выпрямительного диода 1N5819. Это диод Шоттки . В этом мы скоро убедимся.

Обращаю внимание на то, что во время измерения нельзя держать выводы проверяемого элемента и металлические щупы двумя руками. Это грубая ошибка. В таком случае мы измеряем не только параметры диода, но и сопротивление своего тела. Это может существенно повлиять на результат проверки.

Держать щупы и выводы элемента можно только одной рукой! В таком случае в измерительную цепь включен только сам измерительный прибор и проверяемый элемент. Данная рекомендация справедлива и при измерении сопротивления резисторов, а также при проверке конденсаторов . Не забывайте об этом важном правиле!

Итак, проверим диод в прямом включении. При этом плюсовой щуп (красный ) мультиметра подключаем к аноду диода. Минусовой щуп (чёрный ) подключаем к катоду. На фотографии, показанной ранее, видно, что на цилиндрическом корпусе диода нанесено белое кольцо с одного края. Именно с этой стороны у него вывод катода. Таким образом маркируется вывод катода у большинства диодов импортного производства.

Как видим, на дисплее цифрового мультиметра показалось значение порогового напряжения для 1N5819. Так как это диод Шоттки, то его значение невелико – всего 207 милливольт (mV).

Теперь проверим диод в обратном включении. Напоминаем, что в обратном включении диод ток не пропускает. Забегая вперёд, отметим, что и в обратном включении через p-n переход всё-таки протекает небольшой ток. Это так называемый обратный ток (I обр ). Но он настолько мал, что его обычно не учитывают.

Поменяем подключение диода к измерительным щупам мультиметра. Красный щуп подключаем к катоду, а чёрный к аноду.

На дисплее покажется "1 " в старшем разряде дисплея. Это свидетельствует о том, что диод не пропускает ток и его сопротивление велико. Таким образом, мы проверили диод 1N5819 и он оказался полностью исправным.

Многие задаются вопросом: "Можно ли проверить диод не выпаивая его из платы?" Да, можно. Но в таком случае необходимо выпаять из платы хотя бы один его вывод. Это нужно сделать для того, чтобы исключить влияние других деталей, которые соединены с проверяемым диодом.

Если этого не сделать, то измерительный ток потечёт через все, в том числе, и через связанные с ним элементы. В результате тестирования показания мультиметра будут неверными!

В некоторых случаях данным правилом можно пренебречь, например, когда чётко видно, что на печатной плате нет таких деталей, которые могут повлиять на результат проверки.

Неисправности диода.

У диода есть две основные неисправности. Это пробой перехода и его обрыв .

    Пробой . При пробое диод превращается в обычный проводник и свободно пропускает ток хоть в прямом направлении, хоть в обратном. При этом, как правило, пищит буззер мультиметра, а на дисплее показывается величина сопротивления перехода. Это сопротивление очень мало и составляет несколько ом, а то и вообще равно нулю.

    Обрыв . При обрыве диод не пропускает ток ни в прямом, ни в обратном включении. В любом случае на дисплее прибора – "1 ". При таком дефекте диод представляет собой изолятор. "Диагноз" - обрыв можно случайно поставить и исправному диоду. Особенно легко это сделать, когда щупы тестера порядком изношены и повреждены. Следите за исправностью измерительных щупов, провода у них ох какие "жиденькие" и при частом использовании легко рвутся.

А теперь пару слов о том, как по значению порогового напряжения (падению напряжения на переходе - Forward Voltage Drop (V f )) можно ориентировочно судить о типе диода и материале из которого он изготовлен.

Вот небольшая подборка, составленная из конкретных диодов и соответствующих им величин V f , которые были получены при их тестировании мультиметром. Все диоды были предварительно проверены на исправность.

Марка диода

диодного моста .

Германиевые диоды имеют прямое падение напряжения равное 300 – 400 милливольт. Например, проверенный нами точечный германиевый диод Д9, который ранее применялся в качестве детектора в радиоприёмниках, имеет пороговое напряжение около 400 милливольт.

    Диоды Шоттки имеют V f в районе 100 – 250 mV;

    У германиевых диодов V f , как правило, равно 300 – 400 mV;

    Кремниевые диоды имеют самое большое падение напряжения на переходе равное 400 – 1000 mV.

Таким образом, с помощью описанной методики можно не только определить исправность диода, но и ориентировочно узнать, из какого материала и по какой технологии он изготовлен. Определить это можно по величине V f .

Возможно, после прочтения данной методики у вас появится вопрос: "А как же проверить диодный мост?" На самом деле, очень просто. Об этом я уже рассказывал .

И светодиод мультиметром? Оказывается, все очень просто. Как раз об этом мы и поговорим в нашей статье.

Как проверить диод мультиметром

На фото ниже у нас простой диод и светодиод.

Берем наш и ставим крутилку на значок проверки диодов. Подробнее об этом и других значках я говорил в статье как измерить ток и напряжение мультиметром


Хотелось бы добавить пару слов о диоде. Диод, как и резистор, имеет два конца. И называются они катод и анод . Если на анод подать плюс, а на катод минус, то через диод спокойно потечет , а если на катод подать плюс, а на анод минус – ток НЕ потечет. Это принцип работы , на котором работают все диоды.

Проверяем первый диод. Один щуп мультиметра ставим на один конец диода, другой щуп на другой конец диода.


Как мы видим, мультиметр показал напряжение в 436 милливольт. Значит, конец диода, который касается красный щуп – это анод, а другой конец – катод. 436 милливольт – это падение напряжения на прямом переходе диода. По моим наблюдениям, это напряжение может быть от 400 и до 700 милливольт для кремниевых диодов, а для германиевых от 200 и до 400 милливольт.


Единичка на мультиметре означает, что сейчас электрический ток не течет через диод. Следовательно, наш диод вполне рабочий.

Как проверить светодиод мультиметром

А как же проверить светодиод? Да точно также, как и диод! Вся соль в том, что если мы встанем красным щупом на анод, а черным на катод светодиода, то он будет светиться!


Смотрите, он чуть-чуть светится! Значит, вывод светодиода, на котором красный щуп – это анод, а вывод на котором черный щуп – это катод. Мультиметр показал падение напряжения 1130 милливольт. Для светодиодов это считается нормально. Оно также может изменяться, в зависимости от “модели” светодиода.

Меняем щупы местами. Светодиод не загорелся.


Выносим вердикт – вполне работоспособный светодиод!

А как же проверить диодные сборки и диодные мосты ? Диодные сборки и диодные мосты – это соединение нескольких диодов, в основном 4 или 6. Находим схему диодной сборки или моста и проверяем каждый диод по отдельности. Как проверить стабилитрон, читайте в статье.

 

Возможно, будет полезно почитать: