Виды регулирующих клапанов и их особенности. Запорно-регулирующие клапаны Управление и технические характеристики

Регулирующие клапаны используют для управления давлением передаваемых по трубопроводам жидких и газообразных веществ. Регулирующий клапан позволяет непрерывно или дискретно регулировать поступление рабочей среды в трубопровод.

Для систем, в которых особенно важно точно распределить потоки рабочей среды, необходим узел регулирования давления.

Это особенно актуально, например, для теплосетей, так как от объемов поступающего в трубы и радиаторы теплоносителя зависит климат в помещениях. Пропускная способность трубопровода снижается или увеличивается соответственно при уменьшении или увеличении сечения отверстия внутри клапана.

Проблема решается путем постоянного изменения пропускной способности трубы, по которой движется жидкость или газ с помощью регулирующего клапана.

По назначению различают три основных вида регулирующих клапанов:

  • двухходовой проходной – служит только для управления расходом жидкости или газа, используется на прямых участках трубопровода;
  • двухходовой угловой – регулирует напор и изменяет его направление, используется на местах поворота трубопровода;
  • трехходовой – смешивает два вида рабочей среды в общий поток или разделяет один поток на два.

Простейший регулирующий клапан – проходной, он состоит из следующих деталей:

  • корпус в виде тройника, имеющего внутри проходное отверстие;
  • фланец или резьба на концах патрубков;
  • узел уплотнения, поддерживающий герметичность клапана;
  • затвор – регулирующий орган клапана;
  • шток – деталь, служащая для изменения положения затвора.

Регулирование потока рабочей среды происходит путем изменения размера проходного отверстия при перемещении положения затвора по отношению к проходному отверстию.

Конструкция частично меняется и дополняется новыми элементами в зависимости от назначения регулировочного клапана.

Обратите внимание! Существуют запорно-регулирующие клапаны, которые доработаны так, чтобы можно было полностью прекратить поступление рабочей среды. В этом случае затвор изготавливается таким образом, чтобы в закрытом положении его части смыкались герметично.

Преимущества регулирующих клапанов

Этот вид регулятора используется в бытовых и промышленных системах водо– и газоснабжения, теплосетях и нефтяных магистралях.

Регулирующие (запорно-регулирующие) клапаны

Клапаны предназначены для управления потоками жидких и газообразных сред, транспортируемых по трубопроводам.

Регулирующие и запорно-регулирующие клапаны осуществляют непрерывное изменение расхода регулируемого потока от минимального, когда клапан полностью закрыт, до максимального, когда клапан полностью открыт.

Запорные или отсечные клапаны управляют регулируемым потоком не непрерывно, а дискретно (клапан полностью открыт или полностью закрыт). Как у регулирующих, так и у запорных клапанов есть небольшие протечки регулируемой среды при закрытом положении клапана.

Следует отметить, что деление клапанов на регулирующие, запорные и запорно-регулирующие есть только в нашей стране, также как и отдельные стандарты на протечки для регулирующих и запорных клапанов. Весь остальной мир производит просто регулирующие клапаны, протечки у которых подразделяются на шесть классов, чем выше номер класса – тем меньше протечки. Последние три класса относятся к клапанам, которые у нас называют запорными и запорно-регулирующими.

Под условным диаметром прохода клапана (Ду) следует понимать номинальный внутренний диаметр входного и выходного патрубков клапана (в ряде случаев диаметр выходного патрубка может превышать диаметр входного). Каждому значению условного диаметра прохода клапана соответствует максимально возможное значение расхода регулируемого вещества, которое, в общем случае, зависит от ряда параметров (перепада давления, плотности и др.). Для удобства сравнения клапанов и выбора по результатам гидравлического расчета необходимого типоразмера клапана введено понятие условной пропускной способности.

Условная пропускная способность клапана (Kvy) показывает, какое количество воды при температуре 20 °С может пропустить клапан при перепаде давления на нем 0,1 МПа (1 кгс/см2) при полностью открытом затворе.

Регулирующий клапан состоит из трех основных блоков: корпуса, дроссельного узла и привода клапана. Типичная конструкция проходного

запорно-регулирующего клапана без установленного привода представлена на рисунке 1.

Внутри корпуса клапана 1 устанавливается дроссельный узел, состоящий из седла 2 и плунжера 3, связанного со штоком 4. Седло может быть выполнено в различных конструктивных исполнениях: вворачиваться в корпус клапана как показано на рисунке 1, прижиматься к корпусу специальной втулкой или выполняться заедино с корпусом.

Плунжер скользит по направляющей, выполненной в крышке 5. Между корпусом 1 и крышкой 5 установлена уплотнительная прокладка 6. Шток 4 выводится наружу через сальниковый узел 7, представляющий собой набор подпружиненных шевронных колец из фторопласта-4 или его модификаций. На крышке 5 устанавливается привод, шток которого соединяется со штоком клапана. Привод может быть пневматическим, ручным, электрическим или электромагнитным.

Дроссельный узел является регулирующим и запирающим элементом клапана. Именно в этом узле реализуется задача изменения проходного сечения клапана и, как следствие, изменение его расходной характеристики.

Конкретные комбинации втулка-седло-плунжер выбираются исходя из условий эксплуатации клапана: перепада давления, типа регулируемой

среды и ее температуры, наличия мехпримесей, величины пропускной способности, вязкости среды и т.д.

В большинстве случаев важное значение для работы клапана имеет правильное направление подачи рабочей среды. Оно маркируется стрелкой на наружной поверхности корпусов. Если среда подается через левый канал в корпусе, изображенном на рисунке 1, то такое направление подачи называется «под затвор» (среда подходит к плунжеру снизу), а если среда подается по правому каналу, то такое направление подачи называется «на затвор» (среда прижимает плунжер к седлу в закрытом состоянии). Основные параметры и характеристики типовых регулирующих проходных клапанов, выпускаемых отечественными предприятиями, представлены в таблицах 1 и 2.

Таблица 1.

Основные параметры запорно-регулирующих клапанов

Таблица 2.

Условная пропускная способность запорно-регулирующих клапанов


ИСПОЛНИТЕЛЬНЫЕ МЕХАНИЗМЫ

Приводы и исполнительные механизмы запорно-регулирующей, регулирующей и запорной трубопроводной арматуры предназначены

для преобразования управляющего сигнала (пневматического, электрического или механического) в механическое (линейное или вращательное) перемещение штока привода и жестко связанного со штоком запорного органа (клапана, шарового затвора, дисковой заслонки, задвижки и т.п.).

Исполнительные механизмы, применяемые для управления запорно-регулирущей арматурой по принципу действия и используемому виду энергии для создания необходимого механического усилия на рабочем затворе подразделяют на:

Пневматические

Электрические

Гидравлические

Комбинированные

Пневматические исполнительные механизмы

Пневматические исполнительные механизмы в силу сложившейся традиции занимают достаточно большое место среди приводов для регулирующей арматуры различного типа. Это обусловлено в первую очередь тем, что массовая промышленная автоматизация до 50-х, 60‑х годов прошлого столетия базировалась в основном на пневматике. Пневматические системы автоматизированного управления сегодня, в эпоху микропроцессоров и широкого применения цифровой электроники, смотрятся несколько архаично, и кроме того, они достаточно громоздкие, требуют организации сетей подготовки и распределения сжатого воздуха, который к тому же расходуется при работе пневматических систем.

Вместе с тем, простота конструкции пневмоприводов, а как следствие этого - достаточно высокая надежность и ремонтопригодность их, позволяют успешно использовать такие приводы и в современных системах автоматизированного управления технологическими процессами.

Пневматические исполнительные механизмы предназначены для преобразования изменений давления воздуха Р на выходе регулятора в перемещение регулирующего органа - клапана, заслонки, шибера, крана и т. п. Регулирующий орган изменяет расход потока жидкости, газа, пара и т. п. на объекте управления, и тем самым вызывает изменение регулируемого технологического параметра.

По типу привода пневматические исполнительные механизмы делятся на мембранные, поршневые, поворотные, пневмодвигатели вращающиеся.

Мембранный исполнительный механизм (МИМ)

Схема мембранного исполнительного механизма (МИМа) показана на рисунке 2. Перемещение выходного штока 2, соединенного с регулирующим органом, в одну сторону осуществляется силой, которая создается давлением Р, в другую - усилием пружины 3. Сигнал Р поступает в герметичную мембранную «головку», в которой находится мембрана из прорезиненной ткани толщиной 2-4 мм с жестким центром. Снизу на мембрану давит пружина 3. В мембранных исполнительных механизмах (рис. 2) давление управляющего воздуха воздействует на мембрану 4, зажатую по периметру между крышками привода, и создает усилие, которое уравнивается пружиной 3. Таким образом, ход штока 2 привода пропорционален величине управляющего давления. Жесткость и предварительное сжатие пружины определяет диапазон усилий привода и номинальный ход.

Мембранные исполнительные механизмы классифицируют, по размерам мембранных «головок». МИМы поставляются обычно совместно

с регулирующими органами - клапанами. Так как при снятии давления Р мембрана всегда перемещается вверх, то в зависимости от конструкции регулирующего органа различают нормально открытые НО и нормально закрытые НЗ клапаны.

Рисунок 2. Мембранный исполнительный механизм, установленный на регулирующем клапане:

1 - регулирующий орган; 2 - шток; 3 - пружина; 4 - мембрана; 5 - сальник

Статические характеристики большинства МИМов близки к линейным, однако они обладают зоной гистерезиса, составляющей 2-15% от наибольшего значения Р. Эта величина зависит от усилий трения в сальнике 5, от перепада давлений на регулирующем органе, от характеристик пружины и эффективной площади мембраны.

Для уменьшения зоны гистерезиса и улучшения динамических характеристик МИМов на исполнительный механизм устанавливают дополнительные усилители мощности, называемые позиционерами. Различают позиционеры, работающие по схеме компенсации перемещений и по схеме компенсации сил. В позиционерах обоих типов МИМ охватывается отрицательной обратной связью по положению штока, что исключает влияние на статические характеристики сил трения в сальнике, перепада давлений на регулирующем органе и т.п.

Одновременно с этим увеличение расхода воздуха, подаваемого в МИМ и заметно улучшаются динамические характеристики последнего.

Для сопряжения с электрическими сигналами систем управления применяют электропневматические позиционеры, которые кроме улучшения статических характеристик мембранных исполнительных механизмов, обеспечивают преобразование электрического сигнала в импульс управляющего воздуха, подаваемого на МИМ.

Основные технические характеристики МИМов представлены в таблице 3.

Таблица 3.


Внешний вид типичных МИМов, устанавливаемых на регулирующих клапанах, представлен на рисунке 3.


Поршневые пневматические приводы

Поршневые пневматические приводы (ППП) применяют в тех случаях, когда требуется линейное перемещение штока исполнительного

– это разновидность трубопроводной арматуры, основной задачей которой является изменение давления на участке трубопровода. Изменение состояния рабочей среды осуществляется посредством изменения площади сечения проходного отверстия в корпусе клапана. Регулировочные клапаны подразделяют на два вида: двухходовые и трехходовые.

Двухходовые регулирующие клапаны. В зависимости от направления потока рабочей среды. Проходные монтируются на прямых участках трубопровода, угловые, соответственно, в тех местах, где нужен поворот трубопровода.

Трехходовые регулирующие клапаны одновременно с регулировочной функцией выполняют задачу смешивания или разделения потоков рабочей среды, как правило, этот вид регулирующей арматуры имеет три патрубка входа-выхода, в зависимости от назначения.

Устройство и принцип работы двухходового проходного клапана

Основной устройства является корпус с расположенным внутри его проходным отверстием, на корпусе располагается система фиксации на трубопроводе и механизм регулирования, обычно это плунжерный или золотниковый затвор. Затвор, вследствие изменения своего положения, относительно проходного отверстия, изменяет его площадь, тем самым, регулируя объем проходящей через него, рабочей среды.

Арматура подразделяется по способу регулировки. В зависимости от вида затворного устройства:

  • Седельной;
  • Золотниковой;
  • Мембранной;
  • Клетчатой.

Регулировка механизма может осуществляться как вручную, через воздействие на шток, так и посредством системы внешнего управления.

Трехходовой регулирующий клапан имеет задачу разделения или смешивания потока рабочей среды. Используется он чаще всего в системах отопления.

Конструкционно устройство этого типа состоит из металлического корпуса с тремя патрубками. Внутренней перегородки с двумя соосными проходными отверстиями, по одному на каждый патрубок. Запорный механизм, закреплённый на управляемом штоке, может регулировать давление потока рабочей среды, проходящее через каждое отверстие, тем самым регулируя давления в одном или двух выходных патрубках.

Управление регулирующим клапаном может осуществляться как вручную, так и автоматически, в зависимости от состояния системы. В этом случае для управления регулирующим клапаном установлена приводная аппаратура: термостатический привод, изменяет характеристики состояния рабочей среды, контролирует температуру и давление. Кроме этого используются и другие виды привода, электромагнитный например.

Основные преимущества

Регулирующие клапаны, в основном, устанавливаются на системах отопления. Материалом корпуса служит металл, обладающий высокой износостойкостью и прочностью. Это стали, чугун и сплавы цветных металлов. Что позволяет добиться высокой надёжности этого вида арматуры.

Но основная задача регулирующего клапана это регулирование расхода рабочей среды, выравнивание давления и температуры в системе. Трехходовые, кроме этого, ещё экономят энергоноситель.

Технические характеристики

Основными техническими характеристиками регулирующих клапанов, которые нужны для выбора и подключения их к системе трубопроводов являются:

  • Диаметр условного прохода;
  • Тип запирания;
  • Вид фиксации на трубопроводе: фланцевый или резьбовой. Реже встречается приварные устройства;
  • Диапазон изменения состояния рабочей среды. Максимальная и минимальная температура и давление, при котором регулирующий клапан сохраняет свою работоспособность;
  • Материал корпуса клапана и уплотнительных поверхностей;
  • Тип управления: ручной, пневматический, гидравлический и так далее.

Монтаж регулировочных клапанов осуществляется в основном на системы, требующие точного распределения потоков рабочей среды, чаще всего это системы отопления. Также широкое применение регулирующие клапаны нашли в промышленности, при транспортировке жидких и газообразных рабочих сред.

Регулирующий клапан - это один из типов регулирующей арматуры, предназначенный для работы в системах отопления, горячего водоснабжения, холодного водоснабжения, циркуляционных, а также других видах систем. Благодаря применению электрических приводов, регулирующий клапан позволяет управлять термодинамическими процессами в системе: непрерывного (аналогового 4-20мА, 0-10В), а также, для дискретного (3 -х позиционного) регулирования.

Регулирующие клапана (иногда их называют регулирующими вентилями) наиболее часто применяющийся тип регулирующей арматуры который используется в основном для регулирования расхода и давления. Принцип работы прост: за счет конуса клапана (цилиндрического и седельного) регулируется расход рабочей среды через проходное сечение клапана. Импульс на открытие и закрытие клапана может подаваться различными системами управления (от контроллеров) в зависимости, например от показаний датчиков температуры. Управляющим органом клапана является электрический, пневматический или гидравлический приводы. Однако иногда используется ручное управление, например в сериях клапанов RV111 и RV113 с приводами ANT40.11, которое служит для управления в случае аварийных ситуаций или при отсутствии привода. Запорно-регулирующие клапаны, с помощью этих устройств осуществляется как регулирование по заданной характеристике, так и уплотнение затвора по Европейским нормам герметичности для запорной арматуры, что обеспечивается специальной конструкцией плунжера, имеющего профильную часть для регулирования, а также уплотнительную поверхность для плотного контакта с седлом в положении «закрыто».

Для присоединения регулирующих клапанов к трубопроводам применяются все известные способы (фланцевый, муфтовый, штуцерный, цапковый, приварной), но приварка к трубопроводу используется только для клапанов, изготовленных из сталей. Большинство из регулирующих клапанов весьма схожи по конструкции с запорными клапанами, но есть и свои специфические особенности.

По направлению потока рабочей среды регулирующие клапаны делятся на: проходные - такие клапаны устанавливаются на прямых участках трубопровода, в них направление потока рабочей среды не изменяется; угловые - меняют направление потока на 90°; - имеют входной и выходной патрубок и служат для регулирования потока рабочей среды - имеют три патрубка для присоединения к трубопроводу (два входных и один выходной) для смешивания двух потоков сред с различными параметрами в один или разделения потоков среды. Основные различия регулирующих клапанов заключаются в конструкциях регулирующих органов.

Смотрите также статьи.

 

Возможно, будет полезно почитать: