Мощный усилитель “Lanzar”. Настройка усилителя мощности ланзар - принципиальная схема усилителя мощности, описание принципиальной схемы, рекомендации по сборке и регулировке Фнч и блок стабилизации

СОБИРАЕМ ЛАНЗАР

Повторение одних и тех же вопросов на каждой странице обсуждения этого усилителя побудило меня написать этот небольшой набросок. Все написанное ниже является моим представлением того, что нужно знать начинающему радиолюбителю, решившему сделать этот усилитель, и не претендует на абсолютную истину.

Допустим, вы находитесь в поиске схемы хорошего транзисторного усилителя. Такие схемы, как например «УМ Зуева», «ВП», «Натали», и другие вам кажутся сложными, или мало опыта для их сборки, но хорошего звука хочется. Тогда вы нашли то, что искали! Ланзар представляет собой усилитель, построенный по классической симметричной схеме, свыходным каскадом работающий в классе АВ , и обладает довольно неплохим звучанием, при отсутствии сложной настройки и дефицитных комплектующих.

Схема усилителя:

Я счел нужным внести некоторые незначительные изменения в оригинальную схему: коэффициент усиления немного повышен – до 28 раз (изменен R14), изменены номиналы входного фильтра R1, R2, а также по совету MayBe I’m a Leo номиналы резисторов базового делителя транзистора термостабилизации (R15, R15’) для более плавной настройки тока покоя. Изменения не являются критическими. Нумерация элементов сохранена.

Питание усилителя

Источник питания усилителя – самое дорогостоящее звено в нем, поэтому начинать следует с него. Ниже несколько слов об ИП.

Исходя из сопротивления нагрузки и желаемой выходной мощности выбирается нужное напряжение питания (Таблица 1). Данная таблица взята с сайта-первоисточника (interlavka.narod.ru), однако , лично я настоятельно не рекомендовал бы эксплуатировать данный усилитель на мощностях более 200-220 Ватт.

ЗАПОМНИТЕ! Это не компьютер, никакое супер-охлаждение не нужно, конструкция не должна работать на пределе своих возможностей, тогда вы получите надежный усилитель, который будет работать долгие годы и радовать вас звуком. Мы ведь решили сделать качественное устройство, а не букет новогодних фейерверков, поэтому всякие «выжиматели» пускай идут лесом.

При напряжениях питания ниже ±45 В/8 Ом и ±35 В/4 Ом вторую пару выходных транзисторов (VT12, VT13) можно не ставить! При таких напряжениях питания получаем выходную мощность порядка 100 Вт, что для дома более чем достаточно. Замечу, что если при таких напряжениях все-таки установить 2 пары, то выходная мощность повысится совсем на незначительную величину порядка 3-5 Вт. Но если «жаба не душит», то с целью увеличения надежности можно и 2 пары поставить.

Мощность трансформатора можно рассчитать, используя программу «PowerSup» . Расчет, основанный на том, что примерный КПД усилителя равен 50-55%, а значит, мощность трансформатора равна: Pтранс=(Pвых*Nканалов*100%)/КПД применим только в том случае, если вы хотите долговременно слушать синусоиду. У реального же музыкального сигнала, в отличие от синуса, соотношение пикового и среднего значений гораздо меньше, поэтому нет смысла тратить деньги на лишние мощности трансформатора, которые все равно никогда не будут использованы.

В расчете рекомендую выбирать самый «тяжелый» пик-фактор (8 дБ), чтобы ваш БП незагнулся, если вдруг решите послушать музыку с таким п-ф. Кстати, выходную мощность и напряжение питания тоже рекомендую рассчитать с помощью этой программы. Для Ланзара dU можно выбрать порядка 4-7 В.

Более подробно о программе «PowerSup» и методике расчета написано на сайте автора (AudioKiller’а).

Все это особенно актуально, если вы решили купить новый трансформатор. Если же у вас в закромах он уже имеется, и вдруг оказался большей мощности, чем расчетная, то можно смело его использовать, запас – вещь хорошая, но фанатизма не нужно. Если же вы решили самостоятельно изготовить трансформатор, то на этой страничке Сергея Комарова есть нормальный метод расчета .

Непосредственно сама схема простейшего двуполярного БП выглядит так:

Сама схема и детали для ее построения хорошо описана Михаилом (D-Evil) в ФАКе по TDA7294.

Повторяться не буду, отмечу только поправку про мощность трансформатора, описанно выше, и про диодный мостик : так как у Ланзара напряжение питания может быть выше, чему TDA729х, то мостик должен «держать» соответственно большее обратное напряжение, не менее:

Uобр_мин = 1,2*(1,4*2*Uполуобмотки_трансформатора) ,

где 1.2 – коэффициент запаса (20%)

А при больших мощностях трансформатора и емкостях в фильтре с целью защиты трансформатора и мостика от колоссальных пусковых токов следует использовать т.н. схему «мягкого пуска» или «софтстарт».

Детали усилителя

Список деталей для одного канала приложен в архиве в

Некоторые номиналы требуют особых пояснений:

C1 – разделительный конденсатор, должен быть хорошего качества. По типам конденсаторов, используемых в качестве разделительных, существуют разные мнения, поэтому искушенные смогут сами выбрать для себя наилучший вариант оного. Для остальных рекомендую использовать пленочные полипропиленовые конденсаторы известных брендов типа Рифа PHE426 и т.п., но при отсутствии таковых широкодоступные лавсановые К73-17 вполне подойдут.

От емкости этого конденсатора также зависит нижняя граничная частота, которая будет усиливаться.

В печатной плате от interlavka.narod.ru в качестве С1 предусмотрено посадочное место для неполярного конденсатора, составленного из двух электролитов, включеннях «минусами» друг к другу и «плюсами» в цепь и зашунтированных пленочным конденсатором 1 мкФ:

Лично я бы выкинул электролиты и оставил бы один пленочный конденсатор выше указанных типов, емкостью 1,5-3,3 мкФ – такой емкости достаточно для работы усилителя на «широкую полосу». В случае работы на сабвуфер, емкость требуется по-больше. Тут то и можно было бы добавить электролиты емкостями 22-50 мкФ х 25 В. Однако, печатная плата накладывает свои ограничения, и пленочный конденсатор 2.2-3.3 мкФ туда вряд ли влезет. Поэтому ставим 2х22 мкф 25 В+1 мкФ.

R3, R6 – балластные. Хотя изначально эти резисторы выбраны 2,7 кОм, я бы пересчитал их на нужное напряжение питания усилителя по формуле:

R=(Uплеча – 15В)/Iст (кОм) ,

где Iст – ток стабилизации, мА (порядка 8-10 мА)

L1 – 10 витков провода 0,8 мм на 12 мм оправке, все смазывается суперклеем, и после высыхания внутрь вкладывается резистор R31.

Электролитические конденсаторы С8, С11, С16, С17 должны быть рассчитаны нанапряжение не ниже, чем напряжение питания с запасом 15-20%, например, при ±35 В подойдут конденсаторы на 50 В, а при ±50 В уже нужно выбирать на 63 Вольта. Напряжения других электролитических конденсаторов указано на схеме.

Пленочные конденсаторы (неполярные) обычно не делают рассчитанными менее чем на 63 В, так что тут проблем возникнуть не должно.

Подстроечный резистор R15 – многооборотный, тип 3296.

Под эмиттерные резисторы R26, R27, R29 и R30 – на плате предусмотрены посадочные места под проволочные керамические SQP резисторы мощностью 5 Вт. Диапазон приемлемых номиналов – 0,22-0,33 Ом. Хотя SQP – это далеко не самый лучший вариант, зато доступный.

Можно применить и отечественные резисторы C5-16. Я не пробовал, но возможно они даже будут лучше SQP.

Остальные резисторы – C1-4 (углеродистые) или С2-23 (МЛТ) (металлопленочные). Все, кроме указанных отдельно – на 0,25 Вт.

Некоторые возможные замены :

  1. Парные транзисторы меняются на другие пары. Составление пары из транзисторов двух разных пар недопустимо.
  2. VT5/VT6 можно заменить на 2SB649/2SD669. Следует учесть, что цоколевка этих транзисторов зеркальна относительно 2SA1837/2SC4793, и при использовании их нужно развернуть на 180 градусов относительно нарисованных на плате.
  3. VT8/VT9 – на 2SC5171/2SA1930
  4. VT7 – на BD135, BD137
  5. Транзисторы дифкаскадов (VT 1 и VT3 ), (VT 2 и VT4 ) желательно подобрать попарно с наименьшим разбросом беты (hFE) с помощью тестера. Точности 10-15% вполне достаточно. При сильном разбросе возможен несколько повышенный уровень постоянного напряжения на выходе. Процесс описан Михаилом (D-Evil) в ФАКе по усилителю ВП .

Еще одна иллюстрация процесса измерения беты:

Транзисторы 2SC5200/2SA1943 являются самыми дорогостоящими компонентами в данной схеме, их часто подделывают. Похожие на настоящие 2SC5200/2SA1943 фирмы Toshiba имеют сверху два следа отлома и выглядят так:

Одинаковые выходные транзисторы желательно взять из одной партии (на рисунке 512 – номер партии, т.е. скажем оба 2SC5200 с номером 512), тогда ток покоя при установке двух пар будет равномернее распределяться на каждую пару.

Печатная плата

Печатная плата взята с interlavka.narod.ru. Исправления с моей стороны носили в основном косметический характер, также исправлены некоторые ошибки в подписанных номиналах, вроде перепутанных резисторов у транзистора термостабилизации и др. мелочи. Плата нарисована со стороны деталей. Зеркалить для изготовления ЛУТ’ом не нужно!

  1. ВАЖНО! Перед впаиванием каждая деталь должна быть проверена на исправность, сопротивление резисторов измерено во избежание ошибки в номинале, транзисторы проверены прозвонкой тестером, и так далее. Искать подобные ошибки потом на собранной плате гораздо сложнее, так что лучше не торопиться и все проверить. Cэкономите КУЧУ времени и нервов.
  2. ВАЖНО! Перед впаиванием подстроечного резистора R15 , он должен быть «выкручен» так, чтобы в разрыв дорожки впаивалось его полное сопротивление, т.е., если смотреть по картинке выше, между правым и средним выводом д.б. все сопротивление подстроечника.
  3. Перемычки во избежание случайного к.з. лучше делать изолированными проводами.
  4. Транзисторы VT7-VT13 устанавливаются на общий радиатор через изолирующие прокладки – слюду с термопастой (например, КПТ-8) или «Номакон». Слюда более предпочтительна. Указанные на схеме VT8,VT9 в изолированном корпусе, поэтому их фланцы достаточно просто смазать термопастой. После установки на радиатор тестером проверяются коллекторы транзисторов (средние ножки) на отсутствие к.з. с радиатором.
  5. Транзисторы VT5, VT6 тоже нужно установить на небольшие радиаторы – например 2 плоские пластинки размерами около 7х3 см, вообще, что найдется в закромах, то и ставьте, незабудьте только термопастой промазать.
  6. Для лучшего теплового контакта транзисторы дифкаскадов (VT1 и VT3 ), (VT2 и VT4 ) можно тоже смазать термопастой и прижать их друг к другу термоусадкой.

Первый запуск и настройка

Еще раз внимательно все проверяем, если на вид все нормально, нигде нет ошибок, «соплей», коротких замыканий на радиатор и пр., то можно приступить к первому запуску.

ВАЖНО! Первый запуск и настройку любого усилителя нужно проводить с закороченным на землю входом, с ограничением тока источника питания и без нагрузки . Тогда шанс спалить что-то сильно уменьшается. Самое простое решение, которым пользуюсь я – лампа накаливания 60-150 Вт , включенная последовательно первичной обмотке трансформатора:

Запускаем через лампу усилитель, измеряем постоянное напряжение на выходе: нормальные значения – не более ±(50-70) мВ. «Гуляние» постоянки в пределах ±10 мВ считается нормальным. Контролируем наличие напряжений 15 В на обоих стабилитронах. Если все в норме, ничего не взорвалось, не сгорело, то приступаем к настройке.

Лампа при запуске исправного усилителя с током покоя = 0 должна кратковременно вспыхнуть (из-за тока при заряде емкостей в БП), а потом погаснуть. Если лампа ярко горит, значит что-то неисправно, выключаем и ищем ошибку.

Как уже было сказано, усилитель прост в настройке: требуется только установить ток покоя (ТП) выходных транзисторов.

Его следует выставлять на «прогретом» усилителе, т.е. перед установкой пусть поиграет некоторое время, минут 15-20. Во время установки ТП вход должен быть закорочен на землю, а выход висеть в воздухе.

Ток покоя можно узнать, измерив падение напряжения на паре эмиттерных резисторов, например на R26 и R27 (мультиметр установить на предел 200 мВ, щупы – на эмиттеры VT10 и VT11 ):

Cоответсвенно, Iпок = Uv/(R26+R26) .

Далее ПЛАВНО , без рывков крутим подстроечник и смотрим на показания мультиметра. Требуется установить 70-100 мА . Для указанных на рисунке номиналов резисторов это эквивалентно показанию мультиметра (30-44) мВ.

Лампочка при этом может немного начать светиться. Проверяем еще раз уровень постоянного напряжения на выходе, если все в норме, можно подключать акустику и слушать.

Фото собранного усилителя

Другая полезная информация и возможные варианты устранения несправностей

Самовозбуждение усилителя: Косвенно определяется по нагреву резистора в цепи Цобеля – R28 . Достоверно определяется с помощью осциллографа. Для устранения попробовать увеличить номиналы корректирующих емкостей C9 и C10.

Большой уровень постоянной составляющей на выходе: подобрать транзисторы дифкаскадов (VT1 и VT3 ), (VT2 и VT4 ) по «Бетте». Если не помогает, или подобрать точнее нет возможности, то можно попробовать изменять номинал одного из резисторов R4 и R5 . Но такое решение – не самое лучшее, лучше все же подобрать транзисторы.

Вариант небольшого повышения чувствительности: Повысить чувствительность усилителя (коэф. усиления) можно, увеличив номинал резистора R14. Коэф. усиления может быть рассчитан по формуле:

Ку = 1+R14/R11 , (раз)

Но не стоит слишком увлекаться, так как с увеличением R14 , уменьшается глубина ООС и увеличивается неравномерность АЧХ и КНИ. Лучше измерить уровень выходного напряжения источника при полной громкости (амплитуду) и подсчитать, какой Ку необходим для работы усилителя с полным размахом выходного напряжения, взяв его с запасом 3 дБ (до клиппинга).

Для конкретики, пусть максимум, до которого терпимо поднять Ку – 40-50. Если надо больше, то делайте предусилитель.

Если возникли какие-то вопросы, пишите в соответствующую тему на форум . Удачной сборки!

УНЧ Ланзар (Lanzar) представляет собой усилитель, построенный по классической симметричной схеме, работающий в классе АВ. Очень многие автомобильные усилители собраны по подобной схеме. Простая схема, «разжовонность» сборки и настройки этого усилителя на многочисленных форумах — это гарантия успеха для начинающих усилостроителей. Достаточно, чтобы руки росли из правильных мест, останется только все правильно впаять и выставить ток покоя, вот и вся настройка. Поэтому после сборок усилителей на микросхемах (TDA7294), следующим этапом вполне может послужить Ланзар. Звучание вполне приличное, неприхотлив и вынослив, может использоваться для работы с сабвуферами. В качестве выходных транзисторов можно использовать биполярные и полевые транзисторы.

Схема УНЧ Ланзар

Еще с Интерлавки повелось делать Ланзары по такой разводке . Э-э-э в свете последних тенденций в разводке ПП, то она просто ужасная…

Контуры шин питания и земляные очень длинные, а силовые проводники тонкие, разводить надо с точностью до наоборот. Хотя когда-то давно первым моим собранным и заработавшим УНЧ был Ланзар со всеми этими недочетами). А дальше у меня был некоторый прогресс в освоении разводки ПП в P-CAD с учетом рекомендаций на форумах. Получился вот такой Ланзар на полевичках, ПП двухсторонняя, верхний слой в основном зеляной ввиде сплошного полигона. Получилось компактно и по фэн-шую)

Разводка платы на биполярах с одной парой на выходе:

Сначала правильность разводки проверяем ЛУТ-ом, иначе пропустишь косяк и он размножится при заказе ПП на производстве… Вот так УНЧ Ланзар на одной паре биполярах выглядит в сборе. ПП двухстороннии, пришлось с утюгом покорячится, выравнивая распечатки по контрольным точкам булавками. В целом нормально получилось и запустились каналы сразу.

Раз ошибок в разводке не было, можно и на производстве ПП заказать, т.к. серия не планировалась пока, то для экономии без маски и маркировки:

Регулярно задают вопрос: «Как мотать выходную катушку «. Просто: берем сверло (оправка) диаметром 5.7-5.8 мм, эмальпровод 1-1.1 мм, мотаем 8 витков туда и 7 обратно. Зачищаем, по посадке формуем, все готово.

На две пары биполяров Ланзар тоже развел, спаял и запустил с полоборота:

Фото сохранилось только без оконечников, т.к. не успел впаять, усилитель «обрел» нового хозяина)

В этой статье я покажу свой усилитель Ланзар. Усилитель собирался пол года назад под заказ, но под конец заказчик передумал и я забросил работы по нему.

Вспомнил про него лишь сейчас, когда начался конкурс. Усилитель практически доделан, не хватает лишь пары полевиков в преобразователе и нужно добиться адекватной работы защиты, а так всё готово. К сожалению тесты усилителя в видео проводить я не буду, две основные причины это отсутствие мощного источника питания 12 вольт и вторая – тестовый динамик на 100 ватт при прошлых тестах приказал долго жить, диффузор просто выпрыгнул вместе с катушкой, теперь я без динамика:) за то замерил мощность, на 5 – почти 6 омах она была 300-310 ватт.

В этом усилителе меня удивляет один момент, при снимаемой мощночти 300 вт, выходные транзисторы не выгорают, хотя покупались на ибее за 100 рублей/пара.

Ниже приведена схема усилителя

Схема была взята в интернете, так же как и печатная плата.

Теперь посмотрим на схему преобразователя

Схему рисовал сам, тут мы видим преобразователь напряжения на IR2153, частота преобразователя 70 кГц, в качестве силовых транзисторов примененыIRF3205, по 2 штуки на плечо.

И – питания преобразователя можно кидать (через предохранитель конечно же) напрямую на аккумулятор, ведь включение преобразователя произойдёт только при подаче 12 вольт с магнитолы на контакт REM, а именно на ногу питания микросхемы. Вот такая хитрая схема запуска. Кстати кулер запитывается не напрямую от аккумулятора, а от отдельного выхода преобразователя специально, чтобы он включался только при включении самого усилителя, а не крутился бесконечно, что не слабо сократило бы ему жизненный ресурс.

Трансформатор намотан на двух сложенных кольцах проницаемостью 2000

Первичная обмотка содержит 5 витков на каждое плечо проводом 0.8мм в 10 жил. Основная вторичная обмотка имеет 26+26 витков тем же проводом в 4 жилы. Обмотка питания ФНЧ содержит 8+8 витков тем же проводом. Обмотка для питания кулера – 8 витков.

На выходе имеем двухполярное напряжение +- 60 вольт для питания самого усилителя и блока защиты, двухполярное стабилизированное +-15 вольт для питания ФНЧ и однополряное стабилизированное 12 вольт для питания кулера. Все напряжения выпрямляются диодными мостами. Основной выход – это 4 диода FCF10A40 10 Ампер 400 Вольт, они усаживаются на радиатор. Остальные мосты построены из ультрабыстрых 1 амперных диодов UF4007.

Схемы ФНЧ и защиты нет, но есть печатные платы со всеми номиналами компонентов.

Вот что в итоге у меня получилось

Прошлым летом был создан автомобильный аудиокомплекс, но с тех пор прошел уже год и пришло время перемен. Для начала поясню суть идеи. Было задумано собрать усилительную установку разряда Hi-Fi для работы в автомобиле. Требования к усилителю были такими: мощный канал 250-350 ватт для питания сабвуфера, два канала для питания тыловой акустики, и 8 каналов для питания маломощных головок фронта, но все выбранные усилители должны были относится к Hi-Fi. Для реализации такого крупномасштабного проекта нужны были финансы, нервы и куча времени, которые у меня имелись.

Усилитель сабвуфера

Усилитель тыловой акустики

Усилитель фронтальных колонок

ПЕЧАТНАЯ ПЛАТА

Над платой долго не думал, в наличии имелись все платы отдельных блоков, нужно было только все шаблоны перенести на фольгированный стеклотекстолит и потравить. Файлы плат и схем находятся здесь. Шаблоны были нанесены на общую плату после недолгих подсчетов. Для этого процесса использовал широко-известный метод ЛУТ, каждый шаблон гладил 90 секунд, гладить нужно тщательно, чтобы тонер намертво прилип к фольгированной поверхности текстолита и не отклеивался при удалении бумаги.

Далее даем текстолиту остыть 5-10 минут, затем аккуратно убираем бумагу. Для начала плату нужно поставить в сосуд с водой и ждать пару минут, после чего аккуратно убрать бумагу. Реагентов для травления в городке не нашел, пришлось идти на альтернативу. Альтернативный раствор состоит из трех основных компонентов - перекиси водорода, лимонной кислоты и поваренной соли . На мою плату в общем случае было потрачено 12 бутылок перекиси водорода (3-х процентный раствор перекиси водорода, каждая бутылка 100 мг) - приобретено в аптеке 12 пачек лимонной кислоты (пачка - 40 мг) - куплено в продуктовом магазине 9 чайных ложек поваренной соли - украдено из кухни собственного дома. Все компоненты перемешиваются до полного растворения соли и лимонной кислоты.

Из-за больших размеров платы, возникли трудности с сосудом, в котором планировалось травление. Тут тоже решил пойти на альтернативу. В магазине был приобретен полиэтиленовый пакет, который поместил в коробку от какого-то проигрывателя, плата отлично поместилась в такой "сосуд". Налил раствор и все это дело поставил на солнце. Весь процесс травления длился не более часа. Довольно бурная реакция, поэтому нужно проводить на чистом воздухе. Дальше нужно стереть тонер. Для этого используют чистые (или не очень) тряпочки и ацетон. Уже готовую плату нужно тщательно помыть теплой водой, затем высушить феном.

Еще одна проблема - утилизация раствора, я поступил по-варварски сливая весь раствор в канализацию, когда будете делать также, следите, чтоб никто не увидел, а то нахлынут экологи, в моем случае такой проблемы не возникло, поскольку сам являюсь экологом (lol). Дальше уже нужно заняться сверлением отверстий, а тут их очень, очень много. Половину отверстий сверлил 3-х килограммовой дрелью, затем специально для этой затеи на аукционе ebay была куплена мини-дрель со всеми удобствами. В процессе сверления использовал сверла 0.8мм для мелких компонентов (резисторы, конденсаторы, микросхемы и т.п.), сверла 1 мм для более крупных (выходные транзисторы усилителей, силовые диоды) и сверла 5мм для выводов обмоток импульсных трансформаторов.

Уже просверленную плату нужно залудить. Для этого нужен паяльник на сотню ватт, сосновая канифоль, ну и разумеется олово. Советую во время этого процесса надеть маску, дым от канифоли не токсичен, но тут образуется целое облако дыма, дышать довольно трудно при таких условиях. Глянцевый слой олова предает печатной плате красивый внешний вид и сохранит медные дорожки от окисления. Только после завершения этого процесса мы имеем полностью готовую печатную плату, а теперь можно приступить к монтажу...

Сборку деталей печатных плат к нашему домашнему усилителю мы начнём с источника питания, точнее двух источников, так как требуется два БП. Конечно мы используем не силовые трансформаторы на железе, а импульсные блоки питания.

ИНВЕРТОР 1

Этот инвертор предназначен только для питания сабвуферного усилителя по схеме ланзара. Выходное напряжение +/-65 Вольт. Инвертор не имеет стабилизацию выходного напряжения, но не смотря на это серьезные скачки напряжения не наблюдал. Построен инвертор по классической двухтактной схеме с применением ШИМ контроллера на микросхеме TL494 . Трансформатор был намотан на двух кольцах марки 3000НМ (Евгений, спасибо, что выручил и с другого конца света выслал кольца), размеры колец 45*28*8. Если есть возможность, то используйте феррит марки 2000НМ, с ним меньше потерь в трансформаторе. Кольца не склеивал, просто обмотал прозрачным скотчем. Грани кольца не закруглял, просто перед намоткой сердечник обмотал полоской стекловолокна в два слоя. Стекловолокно не боится перегрева и обеспечивает довольно неплохую изоляцию обмоток, хотя в таких инверторах промышленного образца никогда не изолируют обмотки друг от друга, поскольку напряжение не столь высокое.

Намотка делалась двумя полностью идентичными шинами, каждая из шин состоит из 12 жил провода с диаметром 0,7 мм. Перед намоткой берем контрольный провод, им будем выяснять, какой длины нужна шина. Контрольный провод может быть любым, любого сечения (для удобства диаметр подобрать 0,3-1 мм), Итак, берем контрольный провод и мотаем 5 витков по на кольце, витки равномерно растягивая по всему кольцу. Теперь отматываем обмотку измеряя длину, допустим длина провода составила 20 см, следовательно для намотки основной обмотки провод нужно брать с запасом 5-7 см, т.е. 25-27 см, разумеется, длина не точная и привел только для примера. Теперь переходим дальше. Поскольку первичная (силовая) обмотка у нас состоит из двух полностью аналогичных плеч, то нам нужны 24 жилы провода 0,7 мм одинаковой длины. Дальше нужно собрать шины из 12 жил, концы жил скручиваем и переходим к процессу намотки.

В разных источниках приводятся отличающиеся друг от друга технологии намотки, этот метод отличается тем, что позволяет получить максимально равноценные обмотки. Намотку делаем сразу двумя шинами, желательно использовать жгут для удобства, но я мотал без него. Максимально аккуратно мотаем 5 витков по всему кольцу, в итоге у нас получается 4 отвода. Для стойкости витков обмотку изолируем, пробная изоляция может быть любой - скотч, изолента, нитки и т.п, лишь бы обмотка держалась, если уверены в правильности намотки, то можно ставить конечную изоляцию (в моем случае опять стекловолокно). Теперь нужно сфазировать обмотки, подключая начало первой полуобмотки (плеча) к концу второй или наоборот начало второй, к концу первой. Мест стыковки обмоток есть отвод от середины, на него подается силовой плюс 12 Вольт по схеме. Вторичная обмотка мотается и фазируется по тому же принципу, что и первичная. Обмотка состоит из 2х24 витков, мотается двумя шинами. Каждая шина состоит из 5 жил провода 0,7 мм.

Диодный выпрямитель собран из 4-х диодов серии КД213А . Это импульсные диоды с обратным напряжением до 200 Вольт, отлично себя чувствуют на частотах 50-80 кГц (хотя могут работать на частотах до 100 кГц), а максимально допустимый ток 10 Ампер - то, что нужно. В дополнительном охлаждении диоды не нуждаются, хотя в ходе работы может наблюдаться тепловыделение.

Дросселя в выходной цепи использовал готовые, от компьютерных блоков питания. Намотаны дросселя на ферритовом стержне (длина 1,5-2 см, диаметр 6 мм). Обмотка содержит 5-6 витков, намотана проводом 2-2,5 мм, для удобства можно мотать несколькими жилами более тонкого провода. Сглаживающие электролиты брал с напряжением 100 Вольт 1000 мкФ, работают с большим запасом. В итоге на плате инвертора 4 таких конденсатора в плече, еще два аналогичных стоят на плате усилителя Ланзар , т.е общая емкость фильтров в плече 5000 мкФ. Перед и после дросселей стоят пленочные конденсаторы с напряжением 100 Вольт, их емкость не особа критична и может быть в районе 0,1-1 мкФ.

ЗАПУСК ПЕРВОГО ИНВЕРТОРА БП

Перед запуском инвертора тщательно проверяем правильность монтажа. Маломощные транзисторы BC556/557 можно заменить на отечественный аналог КТ3107, ВС546 на КТ3102 или любые другие с близкими параметрами. Полевые ключи в ходе работы без выходной нагрузки не должны нагреваться, а с нагрузкой нагрев плеч должен быть равномерным. Последний этап - теплоотвод. Полевые транзисторы в моем случае укреплены на теплоотвод от компьютерного блока питания, через слюдяные прокладки и изолирующие шайбы.

В схеме реализован ремоут контроль (REM), т.е. основной, силовой плюс и минус всегда подключены к усилителю, а для того, чтобы схема завелась, подается плюс на точку REM, открывается транзистор BC546 и подается питание на генератор и начинается рабочий цикл инвертора. Плюс на ремоут можно подавать от автомагнитолы, или же можно приспособить в машине маленький тумблер, которым можно включить и выключить усилитель.

Если возникли проблемы...

Проблема . Бывает так, что при первом же включении выходят из строя полевики.

Причина и устранение . Неправильно сфазирована первичная обмотка или бракованные транзисторы. Если уверены в правильности монтажа и в исправности всех компонентов, то скорее всего первичная обмотка трансформатора неправильно сфазирована. Для этого отключаем вторичную цепь, то есть нагрузку, которая подключена ко вторичной обмотке и снова запускаем трансформатор (часто, проблемы могут возникнуть на вторичных цепях), если все также, то проверяем транзисторы на исправность, они скорее всего будут "убитыми", заменяем и фазируем трансформатор правильно.

Проблема . При включении одна из пар транзисторов перегревается, вторая пара холодная.

Причина и устранение . Вначале проверяем наличие прямоугольных импульсов на 9 и 10 выводах микросхемы, если все ок, то проверяем посключение диодов и маломощных транзисторов, такая проблема возникает по двум причинам - неправильное подключение маломощных транзисторов драйвера или же неравноценные плечи первичной обмотки.

ИНВЕРТОР 2

Схема и печатная плата второго инвертора полностью схожа с первым. Выходное напряжение для питания каналов ОМ составляет 2х55 Вольт (+/-55В). Вторичная обмотка на сей раз намотана 6-ю жилами провода 0,8 мм и состоит из 2х28 Витков, мотается по той же технологии, что и в случае первого инвертора.

Обратите внимание на то, чтобы первичные и вторичные обмотки были обязательно намотаны В ОДИНАКОВОМ НАПРАВЛЕНИИ!

Другая вторичка предназначена для запитки блока усилителей на микросхемах LM1875. Обмотка состоит из 2х8 Витков, намотана 4-мя жилами провода 0,8 мм. После сборки инвертора тщательно проверяем монтаж на ошибки, если таковых нет, то беремся за мультиметр и проверяем вторичные цепи на замыкания.

ПЕРВОЕ ВКЛЮЧЕНИЕ

Первый запуск инвертора стоит сделать от лабораторного БП с защитой от КЗ, при этом в момент запуска защита может ошибочно сработать, если блок маломощный, в моем случае использовался переделанный БП с током 3,5 А. Холостой ток инвертора 170-280 мА, зависит от правильного расчета трансформатора, рабочей частоты генератора и типа полевых ключей, немалую роль играет резистор снаббера, в моем случае с ним пришлось чуток поиграться, чтобы снизить потребление схемы.

Во время холостого хода, на ключах не должно наблюдаться тепловыделения, если оно есть, то имеется проблема с монтажом или нерабочий компонент. Перед запуском промойте плату от флюсов, для этого можно использовать ацетон или растворитель. А теперь приступаем собственно к самому блоку УМЗЧ...

После успешного запуска блока питания, переходим к самой интересной части конструкции - блок усилителей мощности звука. В том числе фильтр низких частот для сабвуфера и модуль стабилизации.

УСИЛИТЕЛЬ ДЛЯ САБВУФЕРА ПО СХЕМЕ ЛАНЗАРА

Ну что сказать про один из самых повторяемых схем усилителя мощности, - схема Ланзар была разработана еще в 70-х годах прошлого столетия. На современной высокоточной элементарной базе, ланзар стал звучать еще лучше. По идее, схема отлично подходит и для широкополосной акустики, искажения при половине громкости всего 0,04% - полноценный Hi-Fi .

Выходной каскад усилителя построен на паре 2SA1943 и 2SC5200 , все каскады собраны на максимально близких по параметрам комплиментарных парах, усилитель построен полностью по симметричной основе. Номинальная выходная мощность усилителя составляет 230-280 ватт, но можно снять гораздо больше, повышая входное напряжение питания. Номиналы ограничительных резисторов дифференциальных каскадов подбирается исходя от входного напряжения. Ниже приведена таблица.

Питание ±70 В - 3,3 кОм...3,9 кОм
Питание ±60 В - 2,7 кОм...3,3 кОм
Питание ±50 В - 2,2 кОм...2,7 кОм
Питание ±40 В - 1,5 кОм...2,2 кОм
Питание ±30 В - 1,0 кОм...1,5 кОм

Эти резисторы подбираются с мощностью 1-2 ватт, в ходе работы на них может наблюдаться тепловыделение.

Регулирующий транзистор заменил на отечественный КТ815 , на тот момент другого не было под рукой. Он предназначен для регулировки тока покоя выходных каскадов, в ходе работы не перегревается, но укреплен на общий теплоотвод с транзисторами выходного каскада.

Первый запуск схемы желательно сделать от сетевого блока питания, последовательно сетевой обмотке трансформатора подключите накальную лампу на 100-150 ватт, если будут проблемы, то спалите минимум деталей. А вообще, схема Ланзара не критична к монтажу и компонентам, я пробовал даже с широким разбросом используемых компонентов, с использованием отечественных радиодеталей - схема показывает высокие параметры даже в этом случая. Принципиальная схема Ланзара имеет две основные версии - на биполярных транзисторах и с применением полевых ключей в предпоследнем каскаде, в моем случае первая версия .

Второй предвыходной каскад работает в чистом классе "А ", поэтому в ходе работы транзисторы перегреваются. Транзисторы этого каскада обязательно устанавливают на теплоотвод, желательно общий, не забудьте про изоляции - слюдяные пластины и изолирующие шайбы для шурупов.

Правильно собранная схема заводится без всяких проблем. Первый запуск делаем с ЗАКОРОЧЕННЫМ НА ЗЕМЛЮ ВХОДОМ , т.е. вход усилителя стыкуем с средней точкой с блока питания. Если после запуска ничего не взорвалось, то можно отсоединять вход от земли. Дальше подключаем нагрузку - динамик и включаем усилитель. Для того, чтобы убедиться в работоспособности усилителя, достаточно дотронуться до оголенного входного провода. Если в головке появляется своеобразный рев - то усилитель работает! Дальше можно укрепить все силовые части на теплоотводы и подать на вход усилителя звуковой сигнал. После 15-20 минут работы на 30-50% от максимальной громкости нужно настроить ток покоя. На фотографии все детально показано, в качестве индикатора напряжение желательно использовать цифровой мультиметр.

Замер выходной мощности усилителя

Как выставить ток покоя

ФНЧ И БЛОК СТАБИЛИЗАЦИИ

Фильтр низкой частоты и сумматора построен на двух микросхемах. Он предназначен для плавной регулировки фазы, громкости и частоты. Сумматор предназначен для суммирования сигналов обеих каналов, для получения более мощного сигнала. В промышленных автоусилителях высокой мощности используется именно такой принцип фильтрации и суммирования сигнала, но сумматор можно при желании исключить из схемы и обойтись только фильтром низких частот. Фильтр срезает все частоты, оставляя только предел в пределах 35-150 Гц.

Регулировка фазы позволяет согласовать сабвуфер с акустическими системами, в некоторых случаях её тоже исключают. Этот блок питается от стабилизированного источника двухполярного напряжения +/-15 Вольт. Питание можно организовать с помощью дополнительной вторичной обмотки или же использовать двухполярный стабилизатор напряжения для понижения напряжения от основной обмотки. Для этого собран двухполярный стабилизатор. Первоначально напряжение снижается диодами зенера, затем усиливается биполярными транзисторами и подается на линейные стабилизаторы напряжения типа 7815 и 7915. На выходе стабилизатора образуется стабильное двухполярное питание, которым и питается блок сумматора и ФНЧ.

Стабилизаторы и транзисторы могут греться, но это вполне нормально, при желании их можно укрепить на теплоотводы, но в моем случае имеется активное охлаждение кулером, поэтому теплоотводы не пригодились, к тому же тепловыделение в пределах нормы, поскольку сам блок ФНЧ потребляет очень мало.

ОПЛЕУХА МИКРОСХЕМАМ

Оплеуха микрухам - не самый простой, но высококачественный усилитель мощности НЧ. Усилитель способен развивать максимальную выходную мощность в 130 ватт и работает в довольно широком диапазоне входного напряжения. Выходной каскад усилителя построен на паре 2sa1943 2sc5200 и работает в режиме АВ . Эта версия, автором была разработана в этом году, ниже ее основные параметры.

Диапазон питающих напряжений = +/- 20В... +/- 60В

Номинальное напряжение питания (100Вт, 4 Ом) = +/- 36В

Номинальное напряжение питания (100Вт, 8 Ом) = +/- 48В


С мощностью все понятно, а что со стороны искажений?


THD+N (при Pвых<=60Вт, 20кГц) <= 0,0009%

THD+N (при максимальной выходной мощности, 1кГц) = 0,003%


THD+N (при максимальной выходной мощности, 20кГц) = 0,008%

Детали, используемые в этом модуле - подстроечные резисторы, маломощные и среднемощные транзисторы:

ТУТ ВИДЕО

Совсем не дурно, почти hi-end ! На самом деле если ориентироваться только по КНИ, то этот усилитель полноценный HI-END , но для хай-энда этого не достаточно, поэтому его отнесли к старому и доброму разряду hi-fi. Несмотря на то, что усилитель развивает всего 100 ватт , он на порядок сложнее аналогичных схем, но сама сборка не составит труда при наличии всех компонентов. Отклонять номиналы схемы не советую - мой опыт это подтверждает.

Маломощные транзисторы в ходе работы могут перегреваться, но волноваться не стоит - это их нормальный режим работы. Выходной каскад, как уже сказал, работает в классе АВ, следовательно, выделятся огромное количество тепла, которое нужно отводить. В моем случае они укреплены на общий теплоотвод, которого более, чем достаточно, но на всякий случай, имеется также и активное охлаждение.

После сборки нас ждет первый запуск схемы. Для этого советую еще раз прочитать запуск и настройку Ланзара - тут все делается точно таким же образом. Первый запуск делаем с закороченной на землю входом, если все ОК, то размыкаем вход и подаем звуковой сигнал. К тому времени все силовые компоненты должны быть укреплены на теплоотвод, а то восхищаясь музыкой можете не заметить, как дымят ключи выходного каскада - каждый из них стоит очень и очень.

Мы наконец заставили достойно звучать наш усилитель домашней аудиосистемы, проверили его работоспособность, оценили качество звука основного канала. Самое время добавить в него модуль защиты от случайных замыканий, чтоб вся работа не пошла лесом, из-за неизбежных случайностей в процессе его эксплуатации. Также соберём остальные маломощные каналы УНЧ, для подключения тыловых колоночек.

ЗАЩИТА АС УМЗЧ

Изначально задумал использовать схему защиты от БРИГ , но затем читая отзывы о симисторной защите захотел попробовать ее. Блоки защиты были сделаны в самом конце, тогда было туго с финансами, а симисторы и прочие компоненты схемы у нас оказались довольно дороги, поэтому вернулся к релейной защите.

В итоге были собраны три блока защиты, один из них для сабвуферного усилителя, а два остальных для каналов ОМ.

В сети можно найти большое количество схем блоков защиты, но эта схема перепробована мной неоднократно. При наличии постоянного напряжения на выходе (выше допустимого) защита мгновенно срабатывает спасая динамическую головку. После подачи питания реле замыкается, а при срабатывания схемы оно должно размыкаться. Защита включает головку с небольшой задержкой - это тоже в свою очередь, является дополнительной страховкой и щелчок после включения, почти не слышен.

Компоненты блока защиты могут отклоняться от указанного, Основной транзистор можно заменить на наш КТ815Г , использовал высоковольтные транзисторы MJE13003 - их у меня навалом, кроме того, они довольно мощные и не перегреваются в ходе работы, поэтому в теплоотводе не нуждаются. Маломощные транзисторы можно заменить на S9014, 9018, 9012 , даже на КТ315 , оптимальный вариант - 2N5551 . Реле на 7-10 Ампер, подобрать можно любое реле на 12 или 24 Вольта, в моем случае на 12 Вольт.

Блоки защиты для каналов ОМ установлены возле трансформатора второго инвертора, работает все это дело довольно четко, при максимальной громкости защита может сработать (ложно) крайне редко.

МАЛОМОЩНЫЕ УСИЛИТЕЛИ

Долго решал какой усилитель использовать для маломощных акустических систем. Как дешевый вариант вначале решил использовать микросхемы TDA2030 , потом подумал, что 18-ти ватт на канал маловато и перешел к TDA2050 - умощненный аналог на 32 ватта. Затем сравнив звучание основных вариантов выбор впал на любимую микросхему - LM1875 , 24 ватта и качество звучания на 2-3 порядка лучше, чем у первых двух микросхем.

Долго копался в сети, но печатную плату под свои нужды так и не нашел. Сидя за компом несколько часов была создана своя версия для пятиканальноо усилителя на микросхемах LM1875 , плата получилась довольно компактной, на плате также предусмотрен блок выпрямителей и фильтров. Этот блок был полностью собран за 2 часа - все компоненты к тому времени имелись в наличии.

ВИДЕО УСИЛИТЕЛЯ

Качество звучания этих микросхем на очень высоком уровне, в конце концов разряд Hi-Fi , отдаваемая мощность приличная - 24 ватта синуса, но в моем случае мощность повышена путем повышения питающего напряжения до 24-х вольт, в таком случае можно получить порядка 30 ватт выходной мощности. На основной плате усилителя у меня было предусмотрено место для 4-х канального усилителя на TDA2030 , но чем-то оно мне не понравилось...

Плата для LM крепится на основную плату УНЧ через стойки в виде трубок и болтов. Питание для этого блока берется со второго инвертора, предусмотрена отдельная обмотка. Выпрямитель и фильтрующие конденсаторы расположены непосредственно на плате усилителя. В качестве выпрямительных диодов уже традиционные КД213А . Дросселей для сглаживания ВЧ помех не использовал, да и нет нужды их применять, поскольку даже в довольно брендовых автомобильных усилителях их часто не ставят. В качестве теплоотвода использовал набор дюралюминиевых болванок 200х40х10 мм.

На плату также укреплен кулер, который одновременно отводит теплый воздух с этого блока и отдувает теплоотводы инверторов. С электроникой аудиокомплекса полностью разобрались - переходим к механике и слесарным работам...

Основа любой радиолюбительской конструкции - красивый удобный корпус, тем более он должен прилично смотреться у аппарата, который занимает достойное место в гостинной или вашем рабочем кабинете.

КОРПУС И МОНТАЖ

С корпусом мучился особо долго, пока в один прекрасный день пришел ко мне один незнакомец. В руках у него было устройство, похожее на старый усилитель мощности. Человек представился и начал беседу. Оказалось что знал он меня отлично и принес ненужную ему вещицу, чтобы обменять на бесперебойник. Бесперебойник ему не дал, но уговорил продать устройство за 400 рублей. Недолго думая, он согласился. Устройство из себя представляет компрессор от компании TESLA , находился вполне рабочем состоянии, но от него мне был нужен только корпус, который как раз подходил для усилительного комплекса.

ВИДЕО - САМОДЕЛЬНЫЙ УСИЛИТЕЛЬ

Трансформаторы были укреплены на плату с помощью особо прочного клея "момент", дополнительно прижал их к плате металлическими шайбами (с резиновой прокладкой, чтобы не зажать обмотки), которые пришлось покрасить в черный цвет, чтобы не бросались в глаза. Шайбы укреплены болтами с длиной 40 мм и диаметром 4 мм.

Шины питания - отняли почти 5 дней. Долго не решался как их провести, из какого материала и какой формы делать. Пробовал многое - алюминий, нержавейку (шины нужного сечения были в наличии только из указанных металлов). Оба варианта не устраивали, слишком много потерь, даже шины с сечением порядка 12 мм перегревались, в случае нержавейки - большое сопротивление участка использованной шины, за 5 минут работы инверторов шина нагревалась так сильно, что на ней можно было спокойно воду вскипятить, в итоге потери только в шинах - скромные 10 Ампер... В результате был куплен толстый многожильный провод с сечением 16 мм и каждый инвертор подключен к основным контактным шинам через такой кабель. Сечение этого провода более, чем достаточно, разумеется можно обойтись и более тонким, но сделал с запасом, так сказать на всякий случай.

Кабель подключается к распределительным шинам (таких шин две) - это сделано для удобства монтажа. Через распределительную шину подается силовой плюс на каждый инвертор. Распределительные шины сделаны из латуни, укрепляются на основную плату болтом и клеем момент (опять же, для страховки).

Теплоотводы взял от какого-то отечественного усилителя, после первого запуска, стало ясно, что их не хватит для такого монстра, ведь все выходные каскады усилителей укрепляются именно на этот теплоотвод. Именно поэтому решил добавить активное охлаждение в виде кулера.

Теплоотвод маломощных усилителей изначально думал вывести наружу, но потом нашел на чердаке дюралюминиевые болванки и решил из них делать теплоотвод. Болванки к счастью имели резьбу и с их стыковкой проблем не возникло. Готовый теплоотвод укреплен к шасси усилителя. На плате маломощных усилителей установлен кулер, но не для отвода тепла с радиаторов этого блока, а для охлаждения силовых ключей инвертора и выпрямительных диодов. В ходе работы на малую мощность, теплоотводы инверторов холодные, но на больших мощностях они довольно сильно перегреваются, поскольку усилители потребляют до 700 ватт, немалая часть мощности утрачивается превращаясь в ненужное тепловыделение на транзисторах.

Изначально думал собрать простенький корпус, поскольку сам усилитель планировался для авто. Уже в конце работ задумывался над оформлением всерьез и все, что получилось - это полностью авторские решения. Смесь бронзового и золотистого карбона, фирменный логотип и оформление передней панели - все это сделано вручную. Регулятор громкости состоит из трех основных частей, регуляторы блока ФНЧ изначально задумал вывести наружу, но немного подумав, понял, что портится дизайн передней панели, поэтому их заранее настроил по вкусу, чтоб больше не пришлось открывать корпус. Частота среза примерно 70 Гц, громкость на максимум - вот и все.

Латунные шины на плате сделал для удобства монтажа, чтоб не пришлось отпаивать основные шины питания когда нужно будет достать плату. Изначально думал, что шин питания будет мало, но потом, когда усилитель был на последнем этапе работ, то понял, что проводов будет больше, чем планировал. Чтобы не портить вид внутреннего монтажа, решил использовать провода с одинаковым цветом изоляции. Почти все многожильные провода использовал с сечением 2,5 мм, для их крепежа использовал специальные полоски с защелкой, пачка таких монтажных полосок стоит доллар, одной пачки с головой хватило на весь проект (100 шт).

Все силовые части усилителей были укреплены на основной теплоотвод через слюдяные прокладки, чтобы не бурить отверстие под каждый транзистор, решил использовать общие пластины из стали, которые прикреплены к теплоотводы всего одним шурупом. Такой метод довольно хорошо прижимает транзисторы к теплоотводу, к тому же, не дай БОГ, при поломках удобно будет работать с выходными каскадами.

И в заключительной части, мы увидим как корпус выглядит снаружи, подсчитаем расходы на создание домашнего усилителя, а также подведём итоги работы.

ИТОГОВЫЕ ЗАТРАТЫ НА КОМПЛЕКС

О затратах сначала хотел промолчать, но думаю многим интересно сколько было потрачено в итоге. указана суммарная стоимость определенного компонента (к примеру irfz44 (8 шт) - 12 $ - общая цена на все транзисторы).

Начнем с инверторов

Кольца (4шт) - 8$
IRFZ44 (4шт) - 8$
IRF3205 (4шт) -10$
BC556 (4шт) - 2$
BC546 (2шт) - 1$
КД213 (8шт) - 10$
TL494 (2шт) 1$
Резисторы 3$
Конденсаторы пленочные - 4$
Конденсаторы электролитические - 12$

УСИЛИТЕЛЬ ЛАНЗАР

Транзисторы
2SA1943 2шт - 8$
2SC5200 2шт - 8$
2SB649 2шт - 2$
2SD669 2шт - 2$
2N5401 2шт - 1$
2N5551 2шт - 1$
Резисторы 5ватт - 4 шт - 3$
Остальные резисторы - 4$

Конденсаторы полярные - 5$
Стабилитроны - 2шт - 2$

УСИЛИТЕЛИ ОМ

2SA1943 2шт - 8$
2SC5200 2шт - 8$
Остальные транзисторы - 10$
Конденсаторы 10$

БЛОК ФИЛЬТРОВ

TL072 1шт -1$
TL084 1шт - 1$
Конденсаторы неполярные - 3$
Резисторы - 2$
Регуляторы 3шт - 4$

БЛОК СТАБИЛИЗАЦИИ

Транзисторы 2$
Стабилитроны 13 вольт 6шт - 1,5$
Стабилизаторы 7815 2шт - 1,5$
Стабилитроны 7915 1шт - 0,7$
Остальное - 2$

БЛОК ЗАЩИТЫ

Транзисторы - 2$
Реле - даром
Остальное -1$
Штекеры, гнезда и разъемы - даром.

УСИЛИТЕЛИ НА LM1875

LM1875 - 5 шт - 18$
Диоды КД213А 4шт 5$
Остальное 3$

ПРОЧЕЕ

Клей момент (особо прочный) 2 флакона - 4$
Эпоксидная смола 1 флакон - 3$
Горячий клей (термоклей) 3 палочки 1$
Термопаста 1 флакон - 3$
Саморезы, шурупы и болты 3$
Шины (латунные) 2 штуки 4$
Шины питания 2$
Провод 16мм (1 метр) 2,5$
Провод одножильный 6мм (2 метр) 2$
Тюльпаны, разъемы для головок - 5$
Теплоотводы - даром
Фольгированный стеклотекстолит - 10$
Реагенты для травления - 5$
Корпус - 20$
Карбон - 10$
Кулер (2 штуки) - 7$

ИНСТРУМЕНТЫ ДЛЯ СБОРКИ

Большинство инструментов советского образца. Киловаттная дрель 70-х годов, который не обменяю даже на самый дорогой электроинструмент, он верой и правдой служил моему отцу и перешел по наследству, 40 лет живет у нас дома, работаю с ним очень часто и еще ни разу не подводил и не ломался - респект и поклон инженерам, которые делали его. Ножовка - тоже советского образца, помогла во многом.

Паяльник - заменил два паяльника, пока собирал усилитель, в итоге использовал паяльник на 25 ватт - для пайки мелких компонентов, паяльник на 60 ватт - для пайки компонентов с толстыми выводами и монстр на сотню ватт - им лудил дорожки, припаивал шины питания и многое другое.

Кусачки , нож канцелярский , ножницы (было их у меня 2 штуки, для проводов и пластика). Набор отверток, пинцеты (маленький, средний и большой), плоскогубцы - в общем именно с их помощью, удалось довести дело до конца.

С учетом всех мелких компонентов на комплекс было потрачено порядка 300 долларов США и 4 месяца кропотливых работ , кто-то сейчас подумает - а зачем это нужно, ведь за 300$ можно готовый усилитель купить. Может и так, но этот усилитель гораздо мощнее и лучше любого УМЗЧ потребительского класса - сравнивал со многими моделями, в том числе magnad , xplod , ivolga . Второе - это полностью ручная работая, каждый припой, каждый шуруп - все сделано вручную, в конце концов оригинальный авторский дизайн, который больше напоминает оформление дорогих ламповых усилителей, и на данный момент данный УНЧ - самое дорогое для меня устройство в доме .

ЗАВЕРШЕНИЕ

Да, этот проект отнял у меня много времени и финансов, но знаете что? Ничуть не жалею, в конце концов был собран действительно очень крутой усилитель, который можно использовать и в машине, и дома, а качество звучания на все 200% лучше любого промышленного аудиоцентра аналогичного класса, не зря в комплексе использовал высококачественные схемы УМЗЧ.

Усилитель вполне подходит для дискотек в малых залах - колоссальная мощность не подведет даже на свадьбах, осталось сделать блок питания и предварительные усилители со всеми удобствами, которые планирую на следующее лето. На сборку было потрачено 4 месяца, были трудности с компонентами и временем, которого так не хватает, но при наличии всех компонентов и комплектующих частей, можно уложится в гораздо короткий срок.

На счет качества звучания - не могу передать это словами, нужно лишь раз послушать и все станет ясно ! Основные проблемы заключались в том, что нужно было все приспособить, резать, травить и смонтировать все это в общий блок. Над видом передней панели думали всей семьей, в конце концов победила версия матери - именно она предложила этот вариант, за это и многое другое - низкий ей поклон - основные идеи подавала она, ну и разумеется жена тоже не оставалась в стороне - помогала и работала почти наравне со мной.

В процессе сборки были некоторые этапы, когда проект забросил, но находил силы и довел до конца, а сегодня с гордостью представляю его вашему суду - здоровья вам, любви и терпения , всегда ваш КАСЬЯН АКА .

ОБЗОР УСИЛИТЕЛЯ МОЩНОСТИ ЛАНЗАР

Откровенно говоря я был сильно удивлен так сильно набирающему популярность выражению УСИЛИТЕЛЬ ЗВУКА. Насколько мне позволяет мое мировозрение, то под усилителем звука может выступать только один предмет - рупор. Вот он действительно усиливает звук уже не один десяток лет. Причем рупор может усиливать звук в обоих направлениях.

Как видно из фотографии рупор ни чего общего с электроникой не имеет, тем не менее поисковые запросы УСИЛИТЕЛЬ МОЩНОСТИ все чаще заменяются на УСИЛИТЕЛЬ ЗВУКА, ну а полное название этого девайса УСИЛИТЕЛЬ МОЩНОСТИ ЗВУКОВОЙ ЧАСТОТЫ вводится всего 29 раз в месяц против 67000 запросов УСИЛИТЕЛЬ ЗВУКА.
Прям интересно с чем это связано... Но это был пролог, а теперь собственно сама сказка:

Принципиальная схема усилителя мощности ЛАНЗАР приведена на рисунке 1. Это практически типовая симметричная схема, что позволило серьезно уменьшить нелинейные искажения до очень низкого уровня.
Данная схема известна довольно давно, еще в восьмидесятых года Болотников и Атаев приводили аналогичную схему на отечественной элементной базе в книге "Практические схемы высококачественного звуковоспроизведения". Однако работы с этой схемотехникой начались несколько не с этого усилителя.
Все началось со схемы автмобильного усилителя PPI 4240 которая была с успехом повторена:


Принципиальная схема автомобильного усилителя PPI 4240

Далее была статья "Вскрываем усилитель -2" от Железного Шихмана (статья к сожалению удалена с авторского сайта). В ней шла речь о схемотехнике автомобильного усилителя Lanzar RK1200C, где в качестве усилителя использовалась все та же симметричнай схемотехника.
Понятно, что лучше один раз увидеть, чем сто раз услышать, поэтому копаясь в своих сто лет записанных дисках я отыскал оригинла статьи и привожу ее в качестве цитаты:

ВСКРЫВАЕМ УСИЛИТЕЛЬ - 2

А.И.Шихатов 2002

Новый подход к конструированию усилителей предполагает создание линейки аппаратов, использующих сходные схемотехнические решения, единые узлы и стилевое оформление. Это позволяет, с одной стороны, сократить расходы на проектирование и изготовление, с другой - расширяет выбор аппаратуры при создании аудиосистемы.
Новая линейка усилителей Lanzar серии RACK выполнена в духе студийной аппаратуры, устанавливаемой в стойку (рэк). На лицевой панели размерами 12,2х2,3 дюйма (310х60мм) установлены органы управления, на задней - все разъемы. При такой компоновке не только улучшается внешний вид системы, но и упрощается работа - кабели не мешают. На передней панели можно смонтировать входящие в комплект крепежные планки и ручки для переноски, тогда аппарат приобретает студийный вид. Кольцевая подсветка регулятора чувствительности только усиливает сходство.
Радиаторы расположены на боковой поверхности усилителя, что позволяет набирать в стойку несколько аппаратов, не нарушая их охлаждение. Это несомненное удобство при создании развернутых аудиосистем. Однако при установке в закрытую стойку необходимо побеспокоиться о циркуляции воздуха - установить приточные и вытяжные вентиляторы, термодатчики. Словом, профессиональная аппаратура во всем требует профессионального подхода.
В линейку входит шесть двухканальных и два четырехканальных усилителя, отличающиеся только выходной мощностью и длиной корпуса.

Структурная схема кроссовера усилителей Lanzar серии RK приведена на рисунке 1. Подробная схема не приводится, поскольку ничего оригинального в ней нет, и не этот узел определяет основные характеристики усилителя. Такая же или аналогичная структура используется в большинстве современных усилителей средней ценовой категории. Набор функций и характеристики оптимизированы с учетом многих факторов:
С одной стороны, возможности кроссовера должны позволять без дополнительных компонентов строить стандартные варианты аудиосистемы (фронт плюс сабвуфер). С другой стороны, вводить полный набор функций во встроенный кроссовер нет особого смысла: Это заметно увеличит стоимость, но во многих случаях останется невостребованным. Выполнение сложных задач удобнее возложить на внешние кроссоверы и эквалайзеры, а встроенные - отключить.

В конструкции использованы сдвоенные операционные усилители KIA4558S. Это малошумящие усилители с низкими собственными искажениями, разработанные с учетом "звукового" применения. Вследствие этого их широко применяют в каскадах предварительного усиления и кросссоверах.
Первый каскад - линейный усилитель с изменяемым коэффициентом усиления. Он согласует выходное напряжение источника сигнала с чувствительностью усилителя мощности, поскольку коэффициент передачи всех остальных каскадов равен единице.
Следующий каскад - регулятор басового усиления (bass boost). В усилителях данной серии он позволяет увеличивать уровень сигнала на частоте 50 Гц на 18 дБ. В продукции других фирм подъем обычно меньше (6-12 дБ), а частота настройки может быть в области 35-60 Гц. Кстати, такой регулятор требует хорошего запаса мощности усилителя: увеличение усиления на 3 дБ соответствует удвоению мощности, на 6 дБ - учетверению, и так далее.
Это напоминает легенду про изобретателя шахмат, который попросил у раджи за первую клетку доски одно зерно, а за каждую последующую - в два раза больше зерен, чем за предыдущую. Легкомысленный раджа не смог выполнить обещание: такого количества зерен не было на всей Земле... Мы в более выгодном положении: увеличение уровня на 18 дБ увеличит мощность сигнала "всего" в 64 раза. В нашем случае в наличии 300 Вт, но не каждый усилитель может похвастаться таким запасом.
Далее сигнал можно подать на усилитель мощности непосредственно, или выделить фильтрами необходимую полосу частот. Кроссоверная часть состоит из двух независимых фильтров. ФНЧ перестраивается в диапазоне 40-120 Гц и предназначен для работы исключительно с сабвуфером. Диапазон перестройки ФВЧ заметно шире: от 150 Гц до 1,5 кГц. В таком виде его можно использовать для работы с широкополосным фронтом или для полосы СЧ-ВЧ в системе с поканальным усилением. Пределы перестройки, кстати, выбраны неспроста: в диапазоне от 120 до 150 Гц получается "дырка", в которой можно спрятать акустический резонанс салона. Примечательно и то, что бас-бустер не отключается ни в одном из режимов. Использование этого каскада одновременно с ФВЧ позволяет корректировать АЧХ в области резонанса салона не хуже, чем эквалайзером.
Последний каскад - с секретом. Его задача - инвертировать сигнал в одном из каналов. Это позволит без дополнительных устройств использовать усилитель в мостовом включении.
Конструктивно кроссовер выполнен на отдельной печатной плате, которая стыкуется с платой усилителя при помощи разъема. Такое решение позволяет для всей линейки усилителей использовать всего два варианта кроссовера: двухканальный и четырехканальный. Последний, кстати, является просто "удвоенным" вариантом двухканального и его секции полностью независимы. Основное отличие - изменившаяся разводка печатной платы.

Усилитель мощности

Усилитель мощности Ланзар выполнен по типовой для современных конструкций схеме, приведенной на рисунке 2. С незначительными вариациями ее можно встретить в большинстве усилителей средней и нижней ценовой категории. Отличие только в типах примененных деталей, количестве выходных транзисторов и напряжении питания. Приведена схема правого канала усилителя. Схема левого канала точно такая же, только номера деталей начинаются на единичку вместо двойки.

На входе усилителя установлен фильтр R242-R243-C241, устраняющий радиочастотные наводки от блока питания. Конденсатор C240 не попускает на вход усилителя мощности постоянную составляющую сигнала. На АЧХ усилителя в звуковом диапазоне частот эти цепи не влияют.
Чтобы избежать щелчков в моменты включения и выключения, вход усилителя замыкается на общий провод транзисторным ключом (этот узел рассмотрен далее, вместе с блоком питания). Резистор R11A исключает возможность самовозбуждения усилителя при замкнутом входе.
Схема усилителя полностью симметрична от входа до выхода. Двойной дифференциальный каскад (Q201-Q204) на входе и каскад на транзисторах Q205,Q206 обеспечивают усиление по напряжению, остальные каскады - усиление по току. Каскад на транзисторе Q207 стабилизирует ток покоя усилителя. Чтобы устранить его "несимметричность" на высоких частотах, он зашунтирован майларовым конденсатором C253.
Каскад драйвера на транзисторах Q208,Q209, как и положено предварительному каскаду, работает в классе A. К его выходу подключена "плавающая" нагрузка - резистор R263, с которого снимается сигнал для возбуждения транзисторов выходного каскада.
В выходном каскаде использовано две пары транзисторов, что позволило снимать с него 300 Вт номинальной мощности и до 600 Вт пиковой. Резисторы в цепях базы и эмиттера устраняют последствия технологического разброса характеристик транзисторов. Кроме того, резисторы в цепи эмиттера служат датчиками тока для системы защиты от перегрузок. Она выполнена на транзисторе Q230 и контролирует ток каждого из четырех транзисторов выходного каскада. При увеличении тока через отдельный транзистор до 6 А или тока всего выходного каскада до 20 А транзистор открывается, выдавая команду на схему блокировки преобразователя напряжения питания.
Коэффициент усиления задается цепью отрицательной обратной связи R280-R258-C250 и равен 16. Корректирующие конденсаторы C251, C252, C280 обеспечивают устойчивость усилителя, охваченного ООС. Включенная на выходе цепь R249,C249 компенсирует рост импеданса нагрузки на ультразвуковых частотах и также препятствует самовозбуждению. В звуковых цепях усилителя использованы всего два электролитических неполярных конденсатора: C240 на входе и C250 в цепи ООС. Ввиду большой емкости заменить их конденсаторами других типов крайне сложно.

Блок питания Блок питания высокой мощности выполнен на полевых транзисторах. Особенность блока питания - отдельные выходные каскады преобразователя для питания усилителей мощности левого и правого каналов. Такая структура характерна для усилителей повышенной мощности и позволяет уменьшить переходные помехи между каналами. Для каждого преобразователя предусмотрен отдельный LC-фильтр в цепи питания (рисунок 3). Диоды D501,D501A защищают усилитель от ошибочного включения в неправильной полярности.

В каждом преобразователе использовано три пары полевых транзисторов и трансформатор, намотанный на ферритовом кольце. Выходное напряжение преобразователей выпрямляется диодными сборками D511,D512,D514,D515 и сглаживается фильтрующими конденсаторами емкостью 3300 мкФ. Выходное напряжение преобразователя не стабилизировано, поэтому мощность усилителя зависит от напряжения бортовой сети. Из отрицательного напряжения правого и положительного напряжения левого канала параметрические стабилизаторы формируют напряжения +15 и -15 вольт для питания кроссовера и дифференциальных каскадов усилителей мощности.
В задающем генераторе использована микросхема KIA494 (TL494). Транзисторы Q503,Q504 умощняют выход микросхемы и ускоряют закрывание ключевых транзисторов выходного каскада. Напряжение питания подано на задающий генератор постоянно, управление включением производится непосредственно от цепи Remote источника сигнала. Такое решение упрощает конструкцию, но в выключенном состоянии усилитель потребляет незначительный ток покоя (несколько миллиампер).
Устройство защиты выполнено на микросхеме KIA358S, содержащей два компаратора. Напряжение питяния подается на нее непосредственно от цепи Remote источника сигнала. Резисторы R518-R519-R520 и термодатчик образуют мост, сигнал с которого подан на один из компараторов. На другой компаратор через формирователь на транзисторе Q501 подается сигнал от датчика перегрузки.
При перегреве усилителя на выводе 2 микросхемы появляется высокий уровень напряжения, такой же уровень возникает выводе 8 при перегрузке усилителя. В любом из аварийных случаев сигналы с выхода компараторов через диодную схему ИЛИ (D505,D506,R603) блокируют работу задающего генератора по выводу 16. Восстановление работы происходит после устранения причин перегрузки или охлаждения усилителя ниже порога срабатывания термодатчика.
Оригинально выполнен индикатор перегрузки: светодиод включен между источником напряжения +15 В и напряжением бортовой сети. При нормальной работе напряжение приложено к светодиоду в обратной полярности и он не светится. При блокировке преобразователя напряжение +15 В пропадает, светодиод индикатора перегрузки оказывается включенным между источником бортового напряжения и общим проводом в прямом направлении и начинает светиться.
На транзисторах Q504,Q93,Q94 выполнено устройство блокировки входа усилителя мощности на время переходных процессов при включении и выключении. При включении усилителя конденсатор C514 медленно заряжается, транзистор Q504 в это время находится в открытом состоянии. Сигнал с коллектора этого транзистора открывает ключи Q94,Q95. После зарядки конденсатора транзистор Q504 закрывается, а напряжение -15 В с выхода блока питания надежно блокирует ключи. При выключении усилителя транзистор Q504 мгновенно открывается через диод D509, конденсатор быстро разряжается и процесс повторяется в обратном порядке.

Конструкция

Усилитель смонтирован на двух печатных платах. На одной из них находятся усилитель и преобразователь напряжения, на другой - элементы кроссовера и индикаторы включения и перегрузки (на схемах не показаны). Платы выполнены из высококачественного стеклотекстолита с защитным покрытием дорожек и смонтированы в корпусе из алюминиевого профиля П-образного сечения. Мощные транзисторы усилителя и блока питания прижаты накладками к боковым полкам корпуса. Снаружи к боковинам прикреплены профилированные радиаторы. Передняя и задняя панели усилителя выполнены из анодированного алюминиевого профиля. Вся конструкция крепится винтами-саморезами с головками под шестигранник. Вот, собственно, и все - остальное видно на фотографиях.

Как видно из статьи оригинальный усилитель ЛАНЗАР и сам по себе довольно не дурен, но хотелось лучше...
Полез по форумам, конечно же на Вегалаб, но особой подержки не нашел - отклинулся всего один человек. Возможно оно и к лучшему - нет кучи соавторов. Ну а в общем то днем рожденья Ланзара можно считать именно это обращение - на момент написания комента плата уже была вытравлена и запаяна почти полностью.

Так что Ланзару уже десять лет...
После нескольки месяцев экспериментов на свет появился первый вариант данного усилителя, названного "ЛАНЗАРОМ", хотя конечно было бы справедливей назвать его "ПИПИАЙ" - началось то все именно с него. Однако слово ЛАНЗАР звучит гораздо приятней для уха.
Если кто-то ВДРУГ сочтет название попыткой сыграть на брендовом имени, то смею его заверить - ни чего подобного в мыслях не было и усилитель мог получить абсолютно любое название. Однако ЛАНАЗРОМ он стал в честь фирмы LANZAR, поскольку именно эта автомобильная аппаратура попадает в тот небольшой список, кого лично уважает колектив, трудившийся над доводкой данного усилителя.
Широкий диапазон питающих напряжений делает возможным построение усилителя мощностью от 50 до 350 Вт, причем при мощностях до 300 Вт у УМЗЧ коф. нелинейных искажения не превышает 0,08% во всем звуковом диапазоне, что позволяет отнести усилитель к разряду Hi-Fi.
На рисунке приведен внешний вид усилителя.
Схема усилителя полностью симметрична от входа до выхода. Двойной дифференциальный каскад (VT1-VT4) на входе и каскад на транзисторах VT5, VT6 обеспечивают усиление по напряжению, остальные каскады - усиление по току. Каскад на транзисторе VT7 стабилизирует ток покоя усилителя. Чтобы устранить его "несимметричность" на высоких частотах, он зашунтирован конденсатором C12.
Каскад драйвера на транзисторах VT8, VT9, как и положено предварительному каскаду, работает в классе A. К его выходу подключена "плавающая" нагрузка - резистор R21, с которого снимается сигнал для возбуждения транзисторов выходного каскада. В выходном каскаде использовано две пары транзисторов, что позволило снимать с него до 300 Вт номинальной мощности. Резисторы в цепях базы и эмиттера устраняют последствия технологического разброса характеристик транзисторов, что позволило отказаться от подбора транзисторов по параметрам.
Напоминаем, что при использовании транзисторов одной партии разброс по параметрам между транзисторами не превышает 2% - это данные завода-изготовителя. Реально крайне редко праметры выходят из трех процентной зоны. В усилителе используются только "одно партийные" оконечные транзисторы, что совместно с балансынми резисторами позволило максимально выровнять режимы работы транзисторов между собой. Однако, если усилитель делается для себя любимого, то будет не бесполезным собрасть проверочный стенд, приведенный в конце ЭТОЙ СТАТЬИ .
Относительно схемотехники остается лишь добавить, что подобное схемотехническое решение дает еще один плюс - полная симметрия избавляет от переходных процессов в оконечном каскаде (!), т.е. в момент включения на выходе усилителя отсутсвуют какие бы то ни было выбросы, характерные большинству дискретных усилителей.


Рисунок 1 - принципиальная схема усилителя ЛАНЗАР. УВЕЛИЧИТЬ .


Рисунок 2 - внешний вид усилителя ЛАНЗАР V1.


Рисунок 3- внешний вид усилителя ЛАНЗАР МИНИ

Принципиальная схема мощного эстрадного усилителя мощности 200 Вт 300 Вт 400 Вт умзч на транзисторах высокого качества Hi-Fi УМЗЧ

Техническе характеристики усилителя мощности:

±50 В ±60 В

390

Как видно из характеристик - усилитель Ланзар очень универсален и может с успехом использоваться в любых усилителях мощности, где требуются хорошие характеристики УМЗЧ и высокая выходная мощность.
Режимы работы были несколько откорректированы, что потребовалось устанавить радиатор на транзисторы VT5-VT6. Как это сделать показано на рисунке 3, пояснений пожалуй не требуется. Подобное изменение существенно снизило уровень искажений по сравнению с оригинальной схемой и сделало усилитель менее капризным к напряжению питания.
На рисунке 4 приведен чертеж расположения деталей на печатной плате и схема подключения.


Рисунок 4

Можно конечно довольно долго расхваливать этот усилитель, однако самохвальством как то не скромно заниматься. Поэтому мы решили посмотреть отзывы тех, кто слышал как это работает. Искать долго не пришлось - на форуме Паяльника это усилитель уже давно обсуждают, так что смотрите сами:

Были конечно и отрицательные, но первый от неправильно собранного усилителя, второй от не доведенного варианта на отечественной комплектации...
Довольно часто задают вопросы как звучит усилитель. Надеемся, что не надо напоминать, что на вкус и цвет товарищей нет. Поэтому, чтобы не навязывать Вам своего мнения мы не будем отвечать на этот вопрос. Отметим одно - усилитель действительно звучит. Звук приятный, не навязчивый, детализация хорошая, при хорошем источнике сигнала.

Усилитель мощности звуковой частоты УМ ЛАНЗАР на базе мощных биполярных транзисторов позволит Вам за короткий промежуток веремени собрать очень высококачественный усилитель звуковой частоты.
Конструктивно плата усилителя выполнена в монофоническом варианте. Однако ни что не мешает приобрести 2 платы усилителя для сборки стереофонического УМЗЧ или же 5 - для сборки усилителя 5.1, хотя конечно высокая выходная мощность больше импонирует сабвуферу, но для сабвуфера он слишком хорошо играет...
Учитывая то, что плата уже запаяна и проверена Вам остается только закрепить транзисторы на теплоотводе, подать питание и отрегулировать ток покоя, в соответствии с Вашим напряжением питания.
Сравнительно низкая цена уже готовой платы усилителя мощности на 350 Вт Вас приятно удивит.
Усилитель мощности УМ ЛАНЗАР хорошо зарекомендовал себя как в автомобильной аппаратуре, так и в стационарной. Особенно популярен среди небольших самодеятельных музыкальных коллективов не обремененных большими финансами и позволяет наращивать мощность постепенно - пара усилителей + пара акустических систем. Чуть позже еще раз пара усилителей + пара акустических систем и уже выигрыш не только по мощности, но и по звуковому давлению, что так же создает эфект дополнительной мощности. Еще позже УМ ХОЛТОН 800 под сабвуфер и перевод усилителей на СЧ-ВЧ звено и в результате уже в сумме 2 кВт ОЧЕНЬ приятного звука, что вполне достаточно для любого актового зала...

Питание ±70 В - 3,3 кОм...3,9 кОм
Питание ±60 В - 2,7 кОм...3,3 кОм
Питание ±50 В - 2,2 кОм...2,7 кОм
Питание ±40 В - 1,5 кОм...2,2 кОм
Питание ±30 В - 1,0 кОм...1,5 кОм
Питание ±20 В - СМЕНИТЕ УСИЛИТЕЛЬ

Разумеется, что ВСЕ резисторы 1 Вт, стабилитроны на 15V желательно 1.3 Вт

По нагреву VT5, V6 - в этом случае можно увеличить радиаторы на них или увеличить их эммитерные резисторы с 10 до 20 Ом.

Про конденсаторы фильтра питания усилителя ЛАНЗАР:
При мощности трансформатора 0,4...0,6 от мощности усилителя в плечо 22000...33000 мкФ, емкости в питании УНа (про которые почему то забыли) увеличить до 1000 мкФ
При мощности трансформатора 0,6...0,8 от мощности усилителя в плечо 15000...22000 мкФ, емкости в питании УНа 470...1000 мкФ
При мощности трансформатора 0,8...1 от мощности усилителя в плечо 10000...15000 мкФ, емкости в питании УНа 470 мкФ.
Указанных номиналов вполне достаточно для качественного воспроизведения любых музыкальных фрагментов.

Поскольку данный усилитель пользуется довольно большой популярностью и довольно часто приходят вопросы о его самостоятельном изготовлении были написаны следущие статьи:
Усилители на транзисторах. Основы схемотехнки
Усилители на транзисторах. Построение симметричного усилителя
Тюнинг Ланзара и изменение схемотехники
Наладка усилителя мощности ЛАНЗАР
Увеличение надежности усилителей мощности на примере усилителя ЛАНЗАР
Предпоследняя статья довольно интенсивно использует результаты измерений параметров при помощи симулятора МИКРОКАП-8. Как пользоваться этой программой подробно описано в трилогии статей:
АМПовичок. ДЕТСКИЙ
АМПовичок. ЮНОШЕСКИЙ
АМПовичок. ВЗРОСЛЫЙ

КУПИТЬ ТРАНЗИСТОРЫ ДЛЯ УСИЛИТЕЛЯ ЛАНЗАР

Ну и на последок хотелось бы привести впечатления одного из поклоников данной схемы, собравшего данный усилитель самостоятельно:
Усилитель звучит очень хорошо, высокий демпинг фактор представляет совсем другой уровень воспроизведения НЧ, а высокая скорость нарастания сигнала отлично справляется с воспроизведением даже самых мельчайших звуков в ВЧ и СЧ диапазоне.
О прелестях звучания говорить можно очень много, но главное достоинство этого усилителя в том, что он не вносит ни какой окраски в звучание-он нейтральный в этом плане, и только повторяет и усиливает сигнал от источника звука.
Многие кто слышали как звучит этом усилитель(собранный по этой схеме) давали самую высокую оценку его звучанию, в качестве домашнего усилителя для высококачественных АС, а выносливость в *приближенным к военным действиям* условиям даёт шанс использовать его профессионально для озвучивания различных мероприятий на открытом воздухе, а так же в залах.
Для простого сравнения приведу пример который будет наиболее актуален среди радиолюбителей, а так же среди уже *искушенных хорошим звуком*
в музыкальной фонограмме Gregorian-Moment of Peace хор монахов настолько реалистично звучит, что кажется будто звук проходит насквозь, а женский вокал звучит так, как будто певица стоит прямо перед слушателем.
При использовании АС проверенных временем таких как 35ас012 и им подобным АС получают новое дыхание и даже на максимальной громкости звучат так же отчётливо.
К примеру для любителей громкой музыки,при прослушивании музыкального трека Korn ft. Skrillex - Get Up
Колонки с уверенностью и без заметных искажений смогли отыграть все сложные моменты.
Как противоположность этому усилителю был взят усилитель на ТДА7294 который уже на мощности менее 70вт на 1канал смог перегрузить 35ас012 так, что было отчётливо слышно как катушка НЧ динамика бьётся о керн, что чревато поломкой динамика и как следствие убыткам.
Чего нельзя сказать о усилителе *ЛАНЗАР* - даже при подводимой к этим колонкам мощности около 150Вт колонки продолжали отлично работать, а НЧ динамик был настолько хорошо управляем, что никаких посторонних звуков просто не было.
В музыкальной композиции Evanescence - What You Want
Сцена настолько проработана, что слышны даже удары барабанных палочек друг о друга А в композиции Evanescence - Lithium Official Music Video
Партия скипки сменяется электрогитарой, так что просто начинают шевелится волосы на голове, ведь ни какой *затянустости* звучания попросту нет, а быстрые переходы воспринимаются как будто перед Вами проносится болит формузы 1, одно мгновение и ВЫ погружаетесь в новый мир. Не за быв о вокале который на протяжении всей композиции вносит обобщённость к этим переходам, придавая гармоничность.
В композиции Nightwish - Nemo
Ударные звучат как выстрелы, чётко и без рамытия, а раскаты грома в начале композиции просто заставляют оглядется по сторонам.
В композиции Armin van Buuren ft. Sharon den Adel - In and Out of Love
Мы снова погружаемся в мир звуков которые пронизывают нас насквозь давая ощущение присутсвия (и это без каких либо эквалайзеров и дополнительных расшерений стереобазы)
В композиции Johnny Cash Hurt
Мы снова погружаемся в мир гармоничного звучания, а вокал и гитара звучат настолько отчётливо, что даже наростающий темп исполнения воспринимается так, как будто мы сидим за рулём мощного автомобиля и жмём педаль газа в пол, при этом не отпускаем а жмём всё сильнее.
При хорошем источнике звукового сигнала и хорошей акустике усилитель вообще *не напрягает* даже на самой высокой громкости.
Как то был у меня в гостях приятель и захотелось ему послушать на что способен этот усилитель, поставив трек в формате ААС Eagles - Hotel California он выкрутил на всю громкость, при этом со стола начали падать инструменты, грудная клетка ощущала как будто хорошо поставленые удары боксёра, стёкла позванивали в стенке, а нам было вполне комфортно слушать музыку, при этом помещение было 14.5м2 с потолком 2.4м.
Поставили ed_solo-age_of_dub , стекла в двух дверках треснули, звук ощущался всем телом, но голова не болела.

Плата, на базе которой делалось видео в формате LAY-5 .

Если собрать два усилка ЛАНЗАР, можно ли их мостом включить?
Можно конечно, но для начала немного лирики:
Для типового усилителя выходная мощность зависит от напряжения питания и сопротивления нагрузки. Поскольку сопотивление нагрузки у нас известно, и источники питания мы уже имеем, то сколько взять пар выходных транзисторов осталось выяснить.
Теоритически суммарная выходная мощность переменного напряжения складывается из мощности отдаваемой выходным каскадом, который состоит из двух транзисторов - один n-p-n, второй p-n-p, следовательно каждый транзистор нагружен на половину суммарной мощности. Для сладкой парочки 2SA1943 и 2SC5200 тепловая мощность составляет 150 Вт, следовательно исходя приведенного выше умозаключения с одной пары выходников можно снимать 300 Вт.
Но вот только практика показывает что в таком режиме кристал просто не успевает отдавать тепло в радиатор и тепловой пробой гарантирован, ведь транзисторы надо изолировать, а изоляционные прокладки, какими бы тонким они не были, все равно увеличивают тепловое сопротивление, да и поверхность радиатора вряд ли кто полирует до микронной точности...
Так что для нормально работы, для нормальной надежности довольно многие приняли несколько друие формулы расчета требуемого количества выходных транзисторов - выходная мощность усилителя не должна привышать тепловой мощности одного транзистора, а не суммарной мощности пары. Другими словами - если каждый танзистор выходного каскада может рассеить по 150 Вт, то выходная мощность усилителя не должна превышать 150 Вт, если выходных транзисторов две пары, то выходная мощность не должна привышать 300Вт, если три - 450, если четыре - 600.

Ну а теперь вопрос - если типовой усилитель может выдать 300Вт и мы включим два таких усилка мостом, то что произойдет?
Правильно, выходная мощность увеличится примерно раза в два, а вот тепловая мощность рассеиваемая на транзисторах увеличится в 4 раза...
Вот и получается, что для постороения мостовой схемы потребуется уже не 2 пары выходников а 4 на каждой половинке мостового усилителя.
И тут же зададим себе вопрос - а надо ли загонять 8 пар дорогих транзисторов для получения 600 Вт, если можно обойтись четырмя парами просто увеличив напряжение питания?

Ну а там конечно дело хозяйское....
Ну и несколько вариантов ПЕЧАТНЫХ ПЛАТ под данный усилитель будет не лишними. Есть и авторские варианты, есть взятые из интернета, поэтому плату лучше перепроверить - будет и тренировка для ума и меньше проблем во время регулировки собранного варианта. Некоторые варианты были исправлены, так что ошибок может и не быть, а может что то и ускользнуло...
Остался не освещенным еще один вопрос - сборка усилителя ЛАНЗАР на отечественной элементной базе .
Я конечно понимаю, что крабовые палочки делаются не из крабов, а из рыбы. Так же и Ланзар. Дело в том, что во всех попытках сборки на отечественных транзисторах используются самые ходовые - КТ815, КТ814, КТ816, КТ817, КТ818, КТ819. У этих транзисторов и коф усиления меньше и частота единичного усиления, так что именно Ланзаровского звучания Вы не услышите. Но всегда есть альтернатива. В свое время Болотников и Атаев предложили что то похожее по схемотехнике, причем тоже довольно не плохо звучащее:

Подробно о том, какой мощности нужен блок питания для усилителя мощности можно помотреть на видео ниже. Для примера взят усилитель STONECOLD, однако данный замер дает понимание тог, что мощность сетевого трансформатора может быть меньше мощности усилителя примерно на 30%.

В конце статьи хотелось бы отметить, что данному усилителю необходим ДВУПОЛЯРНЫЙ блок питания, поскольку выходное напряжение формируется из положительного плеча питания и отрицательного. Схема такого источника питания приведена ниже:

О габаритной мощности трансформатора выводы можно сделать просмотрев видео выше, а вот по остальным деталям сделаю не большое пояснение.
Вторичная обмотка должна быть намотана проводом, сечение котрого расчитано на габаритную мощность трансформатора плюс поправка на форму сердечника.
Например у нас два канала по 150 Вт, следовательно габаритная мощность трансформатора должна быть не менее 2/3 от мощности усилителя, т.е. при мощности усилителя 300 Вт мощность трансформатора должна быть равна как минимум 200 Вт. При питании ±40 В на нагрузку 4 Ома усилитель как раз развивает порядка 160 Вт на канал, следовательно протекающий по проводу ток имеет значение 200 Вт / 40 В = 5 А.
Если трансформатор имеет Ш-образную форму сердечника, то напряженность в проводе не стоит превышать 2,5 А на квадратный мм сечения - так меньше нагрев провода, да и падение напряжения меньше. Если сердечник тороидальный, то напряженность можно увеличить до 3...3,5 А на 1 квадратный мм сечения провода.
Исходя из выше сказанного для нашего примера вторичка должна быть намотана двумя проводами и начало одной обмотки соединено с концов второй обмотки (точка соединения отмечена красным). Диаметр провода равен D = 2 x √S/π.
При напряженности 2,5 А получаем диаметр 1,6 мм, при напряженности 3,5 А получаем диаметр 1,3 мм.
Диодный мост VD1-VD4 мало того, что должен спокойно выдерживать получившийся ток в 5 А, он должне выдерживать ток, который возникает в момент включения, когда необходимо зарядить конеднсаторы фильтра питания С3 и С4, а чем больше напряжение, чем больше емкость, тем выше значение этого стартового тока. Поэтому диоды должны быть как минимум на 15 Ампер для нашего примера, а в случае увеличения напряжения питания и использования усилителей с двумя парами транзисторов в оконечном каскаде нужны диоды на 30-40 ампер или система мягкого старта.
Емкость конденсаторов С3 и С4 исходя из Советской схемотехники 1000 мкФ на каждые 50 Вт мощности усилителя. Для нашего примера суммарная выходная мощнсоть составляет 300 Вт, это 6 раз по 50 Вт, следовательно емкость конденсаторов фильтра питания должна быть 6000 мкФ в плечо. Но 6000 не типовое значение, поэтому округляем до типового в большую сторону и получаем 6800 мкФ.
Откровенного говоря такие конденсаторы попадаются не часто, поэтому ставим в каждое плечо по 3 конденсатора на 2200 мкФ и получаем 6600 мкФ, что вполне приемлемо. Вопрос можно решить несколько проще - использовать по одному конденсатору на 10000 мкФ

 

Возможно, будет полезно почитать: