Электронный сигнализатор зарядки аккумуляторной батареи. Приставка к зарядному для защиты аккумулятора Зарядка автомат приставка для трансформаторного зу

В статье рассматривается схема несложного устройства, дополнив которым ваше зарядное устройство (ЗУ), процесс зарядки может быть автоматизирован. Так же оно поможет содержать ваш аккумулятор в заряженном состоянии в период длительного хранения, что способствует значительному увеличению его срока службы.

Устройства представляет собой электронное реле, следящее за напряжением подключенного аккумулятора. Реле имеет два порога срабатывания по наибольшему и наименьшему значению напряжения, выставленным в процессе наладки.

Контактная группа К1.1 подключается в разрыв одного из проводов, идущего на клеммник для подключения аккумуляторной батареи. Устройство также запитано с этого клеммника.

Настройка устройства. Для настройки узла понадобится источник питания с регулируемым значением напряжения. Подаем питание на вход XS1 (рис. 1). Устанавливаем движок резистора R 2 в верхнее по схеме положение, а R3 в нижнее. Выставляем значение напряжения 14,5 В. При этом транзистор VT 2 должен быть закрыт, а реле К1 должно быть обесточено. Регулировкой R 3 добиваемся срабатывания реле К1. Теперь устанавливаем напряжение в 12,9 В, регулировкой R 2 добиваемся выключения К1.

Т.к контакты реле К1.2, в отключенном состоянии, шунтируют резистор R 2, настройки срабатывания и отключения К1 являются независимыми друг от друга.

О деталях устройства. Резисторы R 2, R 3 подстроечные, тип СП-5, прецизионный стабилитрон Д818 можно заменить на два включенных встречно Д814 с близкими значениями стабилизации напряжения. Реле К1 с напряжением питания 12 В, с двумя группами нормальнозамкнутых контактов. Контактная группу К1.1, должна быть рассчитанна на ток зарядки аккумулятора.

Рассказать в:
А. ЕВСЕЕВ, г. Тула. Радио №5, 1998
Вопросам грамотного обслуживания автомобильных аккумуляторных батарей журнал всегда уделял много внимания. Так, например, предыдущая статья на эту тему была опубликована в прошедшем году (Н. Герцен. "Приставка-автомат к зарядному устройству" в "Радио", 1997, № 7, с. 45, 46). Помещенная ниже работа - очередной шаг в указанном направлении.

Рис.1

Рис.2

Рис.3

Рис.4
В процессе длительного - несколько месяцев - хранения автомобильных аккумуляторных батарей происходит их саморазрядка, в связи с чем рекомендуется не реже одного раза в месяц подзаряжать батарею. Однако обычная подзарядка не в состоянии предотвратить сульфатацию пластин, постепенно приводящую к уменьшению емкости батареи и снижению срока ее службы . Поэтому батарею время от времени подвергают разрядке током, в амперах, численно равным 1/20 номинальной емкости, выраженной в ампер-часах, до напряжения 10,5 В, с последующей зарядкой до напряжения 14,2...14,5 В. Такой зарядно-разрядный цикл следует повторить неоднократно, если батарея сильно засульфатирована или длительное время находилась в полуразряженном состоянии.
Описываемая ниже приставка предназначена для работы совместно с зарядными устройствами, обеспечивающими необходимый зарядный ток и имеющими на выходе пульсирующее зарядное напряжение. Подойдут, например, выпускаемые промышленностью устройства УЗ-А-6/12 (г. Выборг), УЗР-П-12-6,3 (г. Юрьев-Польский), а также любительские, описанные в . Приставка позволяет разряжать батарею до напряжения 10,5 В и по окончании разрядки автоматически начать зарядку током с разрядной составляющей (при соотношении зарядной и разрядной составляющих 10:1). Устройство прекращает зарядку при достижении напряжения на зажимах батареи 14,2...14,5 В, что соответствует ее 100 %-ной заряженности. Оно контролирует напряжение, когда зарядного тока нет. При пропадании сетевого напряжения устройство прекращает разрядку батареи. Циклы разрядка-зарядка могут быть однократными или многократными.
Принципиальная схема приставкиавтомата показана на Рис.1. Питание приставки - комбинированное - от сети, от зарядного устройства и от заряжаемой батареи GB1 в то время, когда оптронный динистор U3 закрыт.
В качестве порогового элемента, вырабатывающего сигнал при двух значениях напряжения на батарее - 14,2...14,5 В при зарядке и 10,5 В при разрядке, - использованы компараторы таймера DA1 с делителями напряжения R7R10 и R8R11. На его входах R и S происходит сравнение напряжения на заряжаемой или разряжаемой батарее с указанными выше пороговыми значениями, определяемыми напряжением питания таймера, сопротивлением резисторов внутреннего делителя напряжения таймера, напряжением на его входе UR (оно снимается со стабилитрона VD2). Нижний и верхний пороги срабатывания компаратора можно изменять подстроечными резисторами R10 и R11. Питается таймер от параметрического стабилизатора VD3R9. Напряжение не слишком сильно разряженной двенадцативольтной батареи обычно равно 12...12,6 В. При включении устройства в сеть с подключенной батареей таймер установится в состояние, соответствующее напряжению высокого уровня на его выходе, транзистор VT1 будет открыт. Откроется динистор оптрона U3, и начнется зарядка батареи, на что и укажет включившийся светодиод HL1.
Однако, как правило, степень заряженности подключаемой батареи неизвестна, поэтому перед началом зарядки ее целесообразно разрядить до напряжения 10,5 В. Для включения режима разрядки после подключения батареи кратковременно нажимают на кнопку SB1 "Пуск". Через контакты SB1.1 на вход R таймера поступит напряжение с подключенной к выходу батареи и переключит его в противоположное состояние (на выходе - низкий уровень), транзистор VT1 закроется и выключит светодиод HL1.
Одновременно через замкнувшиеся контакты SB1.2 на верхний по схеме вход RS-триггера, собранного на элементах DD1.1, DD2.2, приходит низкий уровень. Триггер устанавливается в такое состояние, когда на выходе элемента DD1.1 появляется напряжение высокого уровня.
При показанном на схеме положении контактов переключателя SA1 на выходе элементов DD1.3, DD1.4, включенных инверторами, действует напряжение низкого уровня. Поскольку фототранзистор оптопары U2 открыт (а он открыт все время, пока на приставку подано напряжение сети), через базу транзистора VT4, резистор R23, фототранзистор оптопары и выход логических элементов DD1.3 и DD1.4 протекает ток, достаточный для насыщения этого транзистора. Через лампу накаливания EL1 протекает разрядный ток батареи - около 2,5 А, - что соответствует 20-часовому режиму разрядки батареи 6СТ55. При обслуживании батареи иной емкости следует применять лампу соответствующей мощности.
Напряжение сети через гасящий резистор R1 поступает на диодный мост VD1 и после выпрямления питает последовательно соединенные светодиоды оптронов U1 и U2. Конденсатор С1 и резистор R2 образуют сглаживающий фильтр для светодиода оптрона U2. При пропадании сетевого напряжения фототранзистор этого оптрона закрывается, что приводит к закрыванию транзистора VT4 и прекращению разрядки батареи. По мере разрядки батареи напряжение на ее зажимах уменьшается. Когда оно достигнет 10,5 В, таймер переключится, откроются транзисторы VT1 и VT2. Открывание транзистора VT1 вызовет переход устройства в режим зарядки, переключение RS-триггера и закрывание транзистора VT4, а также открывание транзистора VT3.
Ток зарядки устанавливают с помощью зарядного устройства в соответствии с инструкцией по эксплуатации аккумуляторной батареи, т. е. равным 1/10 или 1/20 емкости батареи. Если зарядка идет без контроля оператора, следует обеспечить ограничение колебаний зарядного тока при колебаниях сетевого напряжения. Самый простой способ стабилизации тока - включение цепи из двух-трех параллельно соединенных автомобильных ламп мощностью 40...50 Вт в разрыв одного из выходных проводов зарядного устройства . Такой же эффект дает включение лампы напряжением 220 В и мощностью 200...300 Вт в один из входных (сетевых) проводов зарядного устройства.
Зарядный ток содержит дозированную разрядную составляющую, что благотворно сказывается на протекании электрохимических процессов в батарее . Ток разрядной составляющей определяет резистор R19 (примерно 0,5 А).
В процессе зарядки напряжение на полюсных выводах батареи плавно увеличивается. Известно, что напряжение полностью заряженной батареи равно 14,2...14,5 В . Это напряжение измеряется в отсутствие зарядного тока, поскольку зарядные импульсы в зависимости от степени разряженности батареи увеличивают мгновенное значение напряжения на ее зажимах на 1...3 В. Для обеспечения такого режима измерения в устройстве использованы элементы U1, R4, VT2. В режиме зарядки транзистор VT2 открыт. На Рис.2 показаны диаграммы напряжения и тока, поясняющие работу оптронов U1 и U2. Напряжение сети выпрямляется диодным мостом (диагр. 1) и поступает на светодиоды оптронов U1 и U2.
Фототранзистор оптрона U1 открывается в моменты, когда ток через светодиод оптрона U1 (диагр. 2) превышает ток открывания фототранзистора. При этом резистор R4 шунтирует подстроечный резистор R11 и верхний порог срабатывания таймера DA1 увеличивается. В моменты перехода сетевого напряжения через нуль фототранзистор закрывается и порог срабатывания таймера уменьшается до значения 14,2...14,5 В. Именно в это время через батарею не протекает ток зарядки. Измерение происходит в каждом полупериоде сети, т. е. 100 раз в секунду. Длительность измерения - 1...3 мс.
Ток через светодиод оптрона U2 протекает все время, пока на приставку подано сетевое напряжение, благодаря чему фототранзистор оптрона U2 открыт.
Как только напряжение на батарее достигнет в отсутствие тока зарядки 14,2...14,5 В, таймер DA1 переключится (на выходе появится низкий уровень) и зарядка прекратится. Поскольку на выходе RS-триггера по-прежнему остается высокий уровень, устройство может оставаться в таком состоянии долго, вплоть до нескольких суток. Потребляемый от батареи ток невелик (20...30 мА) и не может вызвать ее существенной разрядки.
Если необходима многократная тренировка батареи разрядно-зарядными циклами, контакты переключателя SA1 переводят в нижнее по схеме положение. В этом случае RS-триггер оказывается выведенным из работы и зарядка и разрядка будут чередоваться до тех пор, пока есть сетевое напряжение и подключена заряжаемая батарея. Конденсаторы С2, С3 повышают помехоустойчивость работы таймера. Резисторы R19, R22 обеспечивают надежное удержание транзисторов VT3, VT4 закрытыми в отсутствие тока базы. Вместо КТ608Б в устройстве можно применять любые транзисторы из серий КТ603, КТ608, КТ3117, КТ815; КТ503Б - КТ315, КТ501, КТ503, КТ3117; КТ814Б - КТ814, КТ816, КТ818, КТ837 и вместо КТ825Г - любой из этой серии. Оптронный динистор ТО125-10 можно заменить на ТО125-12,5, ТО2-10, ТО2-40, ТСО-10. Диодный мост КЦ407А заменим на КЦ402, КЦ405 с буквенными индексами А, Б, В. Стабилитрон VD3 желательно использовать с небольшим ТКН стабилизации, годятся любые стабилитроны серии Д818. Оксидный конденсатор С1 - К50-16, К50-35 или К50-29; С2, С3 - КМ-6б, К10-23, К73-17 и др. Подстроечные резисторы R10, R11- любые многооборотные, например СП5-2. Резистор R20 - ПЭВ мощностью 10 или 15 Вт (в крайнем случае 7,5 Вт); остальные - МЛТ, ОМЛТ, С2-23. Кнопка SB1 и переключатель SA1 - любые, например, КМ2-1 и МТ1 соответственно. Большая часть элементов устройства смонтирована на печатной плате, изготовленной из фольгированного стеклотекстолита толщиной 2 мм (Рис.3). Оптронный динистор U3 и транзистор VT4 установлены на теплоотводах с поверхностью охлаждения 100...150 см 2 . Плату укрепляют в любом корпусе подходящих размеров (в авторском варианте - 260(100(70 мм). Соединения, по которым протекает ток зарядки и разрядки, должны быть выполнены проводом сечением не менее 2 мм 2 . Провода, соединяющие устройство с аккумуляторной батареей, желательно выбрать гибкими. Для налаживания устройства потребуются лабораторный источник постоянного тока с напряжением, регулируемым в пределах от 9 до 15 В при токе нагрузки не менее 0,6 А, и вольтметр. Сначала зарядное устройство и лампу EL1 временно отключают, а заряжаемую батарею заменяют лабораторным источником тока. Установив по вольтметру напряжение источника 10,5 В, подстроечным резистором R10 устанавливают нижний порог срабатывания компаратора по включению светодиода HL1, а затем, установив напряжение 14,2...14,5 В, подстроечным резистором R11 устанавливают верхний порог по включению светодиода HL2.
Внешний вид собранной приставки показан на Рис.4.
ЛИТЕРАТУРА
1. Болотовский В.И., Вайсгант З. И. Эксплуатация, обслуживание и ремонт свинцовых аккумуляторов. - Л.: Энергоатомиздат. Ленингр. отделение, 1988, 208 с.
2. Кудинов Г., Савчук Г. Автоматическое зарядное устройство. - Радио, 1982, № 1, с. 44-48.
3. Таланов Н., Фомин В. Зарядное устройство для стартерных батарей аккумуляторов. - Радио, 1994, № 7, с. 29.
4. Зельдин Е. Применение интегрального таймера КР1006ВИ1. - Радио, 1986, № 9, с. 36, 37.
5. Коробков А. Прибор для автоматической тренировки аккумуляторов: Сб.: "В помощь радиолюбителю", вып. 96, с. 61-70. -М.: ДОСААФ, 1987.
6. Газизов М. Автоматическое устройство для зарядки и восстановления аккумуляторных батарей. : Сб.: "В помощь радиолюбителю", вып. 94, с. 3-7. - М.: ДОСААФ, 1986.
От редакции. Для обеспечения электробезопасности всей зарядной установки в целом необходимо, чтобы нагрузка (батарея) была гальванически развязана (отделена) от питающей сети. Роль элементов развязки в приставке играют оптроны U1 и U2. К сожалению, выбранные автором оптроны серии АОТ110 не в состоянии устранить опасность поражения током, так как их номинальное напряжение изоляции не превышает 100 В. Для приставки подойдут только те оптроны, напряжение изоляции которых не менее 500 В, фототранзистор - составной (особенно это касается оптрона U2), например, из серии АОТ127. Раздел.

Данное устройство подключается как приставка к зарядному устройству, разнообразных схем которых в интернете уже описано немало. Оно выводит на жидкокристаллический дисплей значение входного напряжения, величину тока зарядки аккумулятора, время зарядки и емкость зарядного тока(которая может быть или в Ампер-часах или в миллиампер-часах - зависит только от прошивки контроллера и примененного шунта). Выходное напряжение зарядного устройства не должно быть менее 7 вольт, иначе для данной приставки потребуется отдельный источник питания. Основу устройства составляет микроконтроллер PIC16F676 и жидкокристаллический 2-строчный индикатор SC 1602 ASLB-XH-HS-G. Максимальная зарядная емкость составляет 5500 ма/ч и 95,0 А/ч соответственно.

Принципиальная схема приведена на Рис 1.

Подключение к зарядному устройству - на Рис 2.

При включении микроконтроллер сначала запрашивает требуемую емкость зарядки. Устанавливается кнопкой SB1. Сброс - кнопкой SB2.

Если кнопку не нажимать более 5 секунд - контроллер автоматически переходит в режим измерений. На выводе 2 (RA5)устанавливается высокий уровень.

Алгоритм подсчета емкости в данной приставке следующий:

1 раз в секунду микроконтроллер измеряет напряжение на входе приставки и ток, и если величина тока больше единицы младшего разряда - увеличивает счетчик секунд на 1. Таким образом часы показывают только время зарядки.

Далее микроконтроллер высчитывает средний ток за минуту. Для этого показания зарядного?ока делятся на 60. Целое число записываются в счетчик, а остаток от деления потом прибавляется к следующему измеренному значению тока,и уже потом эта сумма делится на 60. Сделав, таким образом, 60 измерений в счетчике будет число среднего значения тока за минуту.

Далее среднее значение тока в свою очередь делится на 60(по такому же алгоритму). Таким образом, счетчик емкости увеличивается 1 раз в минуту на величину одна шестидесятая от величины среднего тока за минуту.

После этого счетчик среднего значения тока обнуляется и подсчет начинается сначала. Каждый раз, после подсчета емкости зарядки, производится сравнение измеренной емкости и заданной, и при их равенстве на дисплей выдается сообщение - "Зарядка завершена", а во второй строке - значение этой емкости зарядки и напряжение. На выводе 2 микроконтроллера (RA5) появляется низкий уровень, что приводит к гашению светодиода. Данный сигнал можно использовать для включения реле, которое, например, отключает зарядное устройство от сети (см Рис 3).

Наладка устройства сводится только к установке правильных показаний зарядного тока (R1 R3)и входного напряжения (R2)с помощью эталонного амперметра и вольтметра. Для точной установки показаний приставки рекомендуется использовать многооборотные подстроечные резисторы или ставить дополнительные резисторы последовательно с подстроечными (подобрать экспериментально).

Теперь о шунтах.

Для зарядного устройства на ток до 1000 мА можно использовать блок питания на 15 в, в качестве шунта резистор на 5-10 Ом мощностью 5Вт, и последовательно с заряжаемым аккумулятором переменное сопротивление на 20-100 Ом, которым и будет выставляться величина зарядного тока.

Для зарядного тока до 10 А (max 25,5 A) потребуется изготовить шунт из высокоомной проволоки подходящего сечения на сопротивление 0,1 Ом. Проведенные испытания показали, что даже при сигнале с токового шунта равным 0,1 вольт настроечными резисторами R1 и R3 можно легко установить показания тока в 10 А. Однако, чем больше сигнал с датчика тока, тем легче настроить правильные показания.

В качестве шунта для приставки на 10 А я пробовал использовать кусок аллюминиевого провода сечением 1,5 мм длиной 30 см -прекрасно работает.

Печатная плата для данного устройства из-за простоты схемы не разрабатывалась, оно собрано на макетной плате таких же размеров как и жидкокристаллический индикатор и закреплен сзади. Микроконтроллер устанавливается на панельку и позволяет быстро поменять прошивку для перехода на другой ток зарядного устройства.

Это очень простая схема приставки к вашему уже имеющемуся зарядному устройству. Которая будет контролировать напряжение заряда аккумуляторной батареи и при достижении выставленного уровня - отключать его от зарядника, тем самым предотвращая перезарядку аккумулятора.
Это устройство не имеет абсолютно никаких дефицитных деталей. Вся схема построена всего на одном транзисторе. Имеет светодиодные индикаторы, отображающие состояние: идет зарядка или батарея заряжена.

Кому пригодятся это устройство?

Такое устройство обязательно пригодится автомобилистам. Тем у кого есть не автоматическое зарядное устройство. Это приспособление сделает из вашего обычного зарядного устройства - полностью автоматический зарядник. Вам больше не придется постоянного контролировать зарядку вашей батареи. Все что нужно будет сделать, это поставить аккумулятор заряжаться, а его отключение произойдет автоматически, только после полной зарядки.

Схема автоматического зарядного устройства


Вот собственно и сама схема автомата. Фактически это пороговое реле, которое срабатывает при превышении определенного напряжения. Порог срабатывания устанавливается переменным резистором R2. Для полностью заряженного автомобильного аккумулятора он обычно равен - 14,4 В.
Схему можете скачать здесь -

Печатная плата


Как делать печатную плату, решать Вам. Она не сложная и поэтому ее запросто можно накидать на макетной плате. Ну или можно заморочиться и сделать на текстолите с травлением.

Настройка

Если все детали исправные настройка автомата сводиться только к выставлению порогового напряжения резистором R2. Для этого подключаем схему к зарядному устройству, но аккумулятор пока не подключаем. Переводим резистор R2 в крайнее нижнее положение по схеме. Устанавливаем выходное напряжение на заряднике 14,4 В. Затем медленно вращаем переменный резистор до тех пор, пока не сработает реле. Все настроено.
Поиграемся с напряжением, чтобы убедиться что приставка надежно срабатывает при 14,4 В. После этого ваш автоматический зарядник готов к работе.
В этом видео вы можете подробно посмотреть процесс всей сборки, регулировки и испытания в работе.

Дополнив имеющееся в вашем распоряжении зарядное устройство для автомобильной аккумуляторной батареи предлагаемым автоматом, можете быть спокойны за режим зарядки батареи - как только напряжение ва ее выводах достигнет (14,5±0,2)В, зарядка прекратится. При снижении напряжения до 12,8..13 В зарядка возобновится.

Приставка может быть выполнена в виде отдельного блока либо встроена в зарядное устройство. В любом случае необходимым условием для ее работы будет наличие пульсирующего напряжения на выходе зарядного устройства. Такое напряжение получается, скажем, при установке в устройстве двухполупериодного выпрямителя без сглаживающего конденсатора.

Схема приставки-автомата

Она состоит из тринистора VS1, узла управления тринистором А1, выключателя автомата SA1 и двух цепей индикации- на светодиодах HL1 и HL2. Первая цепь индицирует режим зарядки, вторая - контролирует надежность подключения аккумуляторной батареи к зажимам приставки-автомата.

Если в зарядном устройстве есть стрелочный индикатор - амперметр, первая цепь индикации не обязательна.

Узел управления содержит триггер на транзисторах VТ2, VТЗ и усилитель тока на транзисторе VТ1. База транзистора VТЗ подключена к движку подстроечного резистора R9, которым устанавливают порог переключения триггера, т. е. напряжение включения зарядного тока. «Гистерезис» переключения (разность между верхним н нижним порогами переключения) зависит в основном от резистора R7 и при указанном на схеме сопротивлении его составляет около 1,5 В.

Триггер подключен к проводникам, соединенным с выводами аккумуляторной батареи, и переключается в зависимости от напряжения на них.

Рис. I. Принципиальная схема приставки-автомата.

Транзистор VT1 подключен базовой цепью к триггеру и работает в режиме электронного ключа. Коллекторная же цепь транзистора соединена через резисторы R2, R3 и участок управляющий электрод - катод тринистора с минусовым выводом зарядного устройства. Таким образом, базовая и коллекторная цепи транзистор pa VT1 питаются от разных источников: базовая - от аккумуляторной батареи, а коллекторная - от зарядного устройства.

Тринистор VS1 выполняет роль коммутирующего элемента. Использование его вместо контактов электромагнитного реле, которое иногда применяют в этих случаях, обеспечивает большое число включений - выключений зарядного тока, необходимых для подзарядки ак-кумуляібрной батареи во время длительного хранения.

Как видно из схемы, тринистор подключен катодом к минусовому проводу зарядного устройства, а анодом-к минусовому выводу аккумуляторной батареи. При таком варианте упрощается управление тринистором: при возрастании мгновенного значения пульсирующего Напряжения на выходе зарядного устройства через управляющий электрод тринистора сразу начинает протекать ток (если, конечно, открыт транзистор VT1).

А когда на аноде тринистора появится положительное (относительно катода) напряжение, тринистор окажется надежно открытым. Кроме того," подобное включение выгодно тем, что тринистор можно крепить непосредственно к металлическому корпусу приставки-автомата или корпусу зарядного устройствя (в случае размещения приставки внутри его) как к теплоотводу.

Выключателем SA1 можно отключить приставку, поставив его в положение «Ручн.». Тогда контакты выключателя будут замкнуты, и через "резистор R2 управляющий электрод тринистора окажется" подключенным непосредственно к выводам зарядного устройства". Такой режим нужен, например, для быстрой зарядки аккумулятора перед установкой его на автомобиль.

Детали и конструкция

Транзистор VT1 может быть указанной на схеме серии с буквенными индексами А - Г; VГ2 и VТ3 - КТ603А - КТ603Г; диод VD1-любой из серий Д219, Д220 либо другой кремниевый; стабилитрон VD2 - Д814А, Д814Б, Д808, Д809; тринистор - серии КУ202 с буквенными индексами Г, Е, И, Л, Н, а также Д238Г, Д238Е; светодиоды - любые из серий АЛ 102, АЛ307 (ограничительными резисторами R1 и R11 устанавливают нужный прямой ток используемых светодиодов).

Постоянные резисторы - МЛТ-2 (R2), МЛТ-1 (R6), МЛТ-0,5 (Rl, R3, R8, R11), МЛТ-0,25 (остальные). Подстроечный резистор R9 - СП5-16Б, но подойдет другой, сопротивлением 330 Ом... 1,5 кОм.

Если сопротивление резистора больше указанного на схеме, параллельно его выводам подключают постоянный резистор такого сопротивления, чтобы общее сопротивление составило 330 Ом.

Детали узла управления монтируют на плате (рис. 2) из одностороннего фольгированного стеклотекстолита толщиной 1,5 мм. Подстроечный резистор укрепляют в отверстии диаметром 5,2 мм так, чтобы его ось выступала со стороны печати.

Плату укрепляют внутри корпуса подходящих габаритов либо, как было сказано выше, внутри корпуса зарядного устройства, но обязательно возможно дальше от нагревающихся деталей (выпрямительных диодов, трансформатора, тринистора). В любом случае напротив сси подстроечного резистора в стенке корпуса сверлят отверстие. На лицевой стенке корпуса укрепляют светодиоды и выключатель SA1.

Рис. 2. Печатная плата приставки-автомата.

Для установки тринистора можно изготовить теплоотвод общей площадью около 200 см2. Подойдет, например, пластина дюралюминия толщиной 3 мм и размерами 100X100 мм. Теплоотвод прикрепляют к одной из стенок корпуса (скажем, задней) на расстоянии около 10 мм - для обеспечения конвекции воздуха.

Допустимо прикрепить теплоотвод и к наружной стороне стенки, вырезав в корпусе отверстие под тринистор.

Перед креплением узла управления его нужно проверить и определить положение движка подстроечного резистора. К точкам 1, 2 платы подключают выпрямитель постоянного тока с регулируемым выходным напряжением до 15 В, а цепь индикации (резистор R1 и светодиод HL1) -к точкам 2 и 5. Движок подстроечного резистора устанавливают в нижнее по схеме положение и подают на узел управления напряжение около 13 В. Светодиод должен гореть. Перемещением движка подстроечного резистора вверх по схеме добиваются погасания светодиода. Плавно увеличивая напряжение питания узла управления до 15 В и уменьшая до 12 В, добиваются подстроечным резистором, чтобы светодиод зажигался при напряжении 12.8...13 В и погасал при 14,2...14,7 В.

А. Коробков.

Коробков Александр Васильевич - ведущий специалист одного из московских предприятий, родился в 1986 году. Радиолюбительством занялся в школе, где восьмиклассником собрал детекторный приемник. Через два года осилил супергетеродин. В 60-е годы разработал и собрал транзисторный магнитофон. К этому же периоду относятся первые публикации в журнале «Радио». Немного позже стал публиковаться и в сборнике ВРЛ. Основная тематика публикаций в последнее десятилетие - автомобильная влектроника.

 

Возможно, будет полезно почитать: