Моделирование движения самобалансирующегося велосипеда. Моделирование свободного движения автомобилей по двухполосным автомобильным дорогам Моделирование движения самобалансирующегося велосипеда

В транспортном потоке каждый автомобиль движется либо под влиянием со стороны других участников движения, либо в отсутствии их влияния. Движение автомобиля будем называть свободным, если ни один из участников дорожного движения не оказывает влияния на движение этого автомобиля, а также на мнение водителя о дорожно-транспортной обстановке, в результате изменения которого он мог бы изменить режим движения своего автомобиля. Скорость движения такого автомобиля будем называть скоростью свободного движения на данном участке дороги.

Основанием для моделирования свободного движения автомобиля явились:

Уравнения теории эксплуатационных свойств автомобиля:

а) тягово-скоростные и тормозные свойства автомобиля;

б) уравнения криволинейного движения и устойчивости автомобиля.

Натурные наблюдения за параметрами движения автомобилей на двухполосных дорогах.

Математическая модель свободного движения автомобиля имеет следующую концептуальную основу:

Мера воздействия на органы управления автомобиля, а также мнение водителя о ДТС могут измениться только при наступлении одного из ситуаций, перечисленных ниже.

На каждом участке дороги водитель стремится поддерживать оптимальную с его точки зрения (базовую) скорость движения, которая зависит от цели и дальности поездки, вида перевозимого груза (количества пассажиров), состояния здоровья и степени утомления водителя и других факторов. Базовая скорость в модели задается случайным законом распределения, полученным в результате натурных наблюдений.

Если базовая скорость движения автомобиля на следующем участке дороги отличается от базовой скорости на текущем участке, то водитель заранее изменяет скорость движения автомобиля таким образом, чтобы к моменту въезда на новый участок скорость движения достигла величины базовой скорости на новом участке.

Водитель может через органы управления автомобиля воздействовать на параметры движения следующими способами:

а) изменить скорость движения и ускорение нажатием на педаль тормоза или акселератора (выдвижением рейки);

б) изменить передаточное число КПП, что позволяет изменить диапазон значений скорости движения автомобиля;

в) изменить направление движения автомобиля, вращением рулевого колеса.

Кроме перечисленных действий водитель может включить стоп-сигналы (нажатием педали тормоза) или сигналы поворота, что может служить причиной изменения режима движения других автомобилей.

С точки зрения обеспечения базовой скорости движения автомобиля в конкретных дорожных условиях могут возникнуть следующие характерные обстоятельства:

возможность водителя увеличить скорость движения автомобиля до базовой скорости ограничена тягово-динамическими характеристиками автомобиля;

возможность водителя уменьшить скорость движения автомобиля в режиме торможения (экстренное торможение) ограничена коэффициентом сцепления шины с дорогой и/или тормозными характеристиками автомобиля;

возможность водителя изменить скорость движения автомобиля до базовой скорости не ограничено ни тягово-динамическими или тормозными характеристиками автомобиля, ни сцепными качествами поверхности дороги.

Рассмотрим подробнее, каким образом моделируется движение автомобиля в перечисленных выше случаях.

В первом случае движение автомобиля моделируется на основе известных в теории автомобиля дифференциальных уравнений, полученными на основе уравнения силового баланса автомобиля:

P т = P п + P к + P в + P и, (2.5)

где P т - тяговая сила при установившейся скорости автомобиля;

P п - сила сопротивления подъему;

P к - сила сопротивления качению;

P в - сила сопротивления воздуху;

P и - сила сопротивления разгону (приведенная сила инерции).

Существуют различные зависимости, аппроксимирующие внешние характеристики двигателя. В рассматриваемой модели дифференциальные уравнения движения автомобиля получены на основе аппроксимации внешней характеристики двигателя, приведенной в работе :

где N e , N max - соответственно, мощность и максимальная мощность двигателя, квт;

M k - крутящий момент двигателя, Нм;

M kN - крутящий момент двигателя, при максимальной мощности, Нм;

a, b, c - постоянные коэффициенты для данного двигателя;

n - угловая скорость коленчатого вала двигателя, об/мин;

n N - угловая скорость коленчатого вала при максимальной мощности двигателя, об/мин.

После замены всех членов уравнения (2.5) на соответствующие значения и некоторых преобразований получается:

Где m a - масса автомобиля, кг;

m 0 - масса автомобиля, с номинальной нагрузкой, кг;

u k i - передаточное число коробки передач;

v - скорость движения автомобиля, м/с;

тр - коэффициент полезного действия трансмиссии;

k p - коэффициент коррекции двигателя;

Номинальная скорость движения автомобиля при i-й передаче, м/c;

G a - сила тяжести, действующий на автомобиль, Н;

k f - параметр учета влияния скорости движения на коэффициент сопротивления качению колеса;

W - фактор обтекаемости автомобиля, кг/м;

f 0 - коэффициент сопротивления качению при малой скорости движения;

б - продольный уклон дороги.

Уравнение (2.8) определяет ускорение автомобиля в зависимости от скорости движения. Для рассматриваемой имитационной модели зависимости вида “ускорение - скорость”, “путь разгона - скорость” и т. д. непригодны, поскольку при пересчете векторов-координат автомобилей через интервал времени t min (см. блок 12 на рис 2.16) возникает необходимость определения этих параметров в зависимости от времени.

С целью определения зависимости скорости движения от времени при полной подаче топлива можно проинтегрировать выражение (2.8). Пусть начальным условием будет v = v 0 при t=0. Тогда после интегрирования получим:

Проинтегрируем (2.13) еще раз, при начальных условиях t=0 и s=s 0 . Получим:

где v 0 - начальная скорость движения автомобиля;

s 0 - начальное положение автомобиля;

v 1 и v 2 - корни уравнения.

Для того чтобы получить зависимость a = a(t) нужно найти производную выражения (2. 13) по времени. Получим:

Выражения (2.13) - (2.15) позволяют пересчитать параметры движения автомобиля через произвольный промежуток времени t min , в условиях ограничения параметров движения тягово-динамическими характеристиками автомобиля.

Во втором случае моделирование движения автомобиля осуществляется при следующих допущениях:

силы реакции R x достигают максимального значения одновременно для всех колес;

коэффициенты сцепления x всех колес с дорогой, а следовательно, и ускорение автомобиля j з остаются неизменными за весь период установившегося замедления.

При таких допущениях процесс торможения может быть описан тормозной диаграммой j з = j(t) (рис. 2.3) . Весь процесс торможения с момента обнаружения опасности до полной остановки автомобиля состоит из следующих этапов:

время реакции водителя t рв;

время запаздывания t з;

время нарастания тормозного усилия t н;

время установившегося замедления t уст;

время растормаживания t р.

В случае торможения при полном использовании сил сцепления (экстренное торможение) j уст зависит только от коэффициента сцепления шин с дорогой и продольного уклона дороги, а значение ускорения можно считать постоянным:

Скорость движения и пройденный путь автомобиля в произвольный момент времени t легко определяются интегрированием выражений (2.16) и (2.17):

Рис. 2.3 Тормозная диаграмма автомобиля

И, наконец, в третьем случае водитель имеет возможность придавать автомобилю тот режим движения, который по его мнению является наиболее безопасным и целесообразным в сложившейся дорожно-транспортной ситуации. В этом случае значение ускорения находится в интервале

j уст < a < a max , (2. 20)

и определяется водителем.

С целью упрощения расчетов предполагается, что в таком режиме автомобиль движется равноускоренно до следующего особого состояния. Скорость движения и пройденный путь автомобиля через промежуток времени t в таком случае определяются следующим образом:

Теперь рассмотрим движение автомобиля в условиях изменения направления движения.

В модели предусмотрены следующие виды траекторий движения автомобилей:

прямолинейное движение;

круговое движение (угол поворота управляемых колес не изменяется);

криволинейное движение при постоянной угловой скорости поворота управляемых колес;

Маневрирование автомобилей (обгоны, перестраивания по полосам движения, повороты и т.д.) являются опасными, но в то же время неотъемлемыми элементами движения автомобилей. С изменением направления движения автомобилей связаны многочисленные конфликтные ситуации и ДТП, поскольку такие маневры, часто совершаемые внезапно для других участников дорожного движения, создают возмущения в транспортном потоке. Несмотря на это, в существующих имитационных моделях дорожного движения различных отечественных и зарубежных исследователей упрощенно описываются движение автомобиля и траектории отдельных его точек при изменении направления движения. Часто положение автомобиля на дороге задается только продольной координатой; при этом подразумевается, что в поперечном направлении автомобиль не движется, а изменение полосы движения при обгонах или маневрах перестроения происходит скачкообразно. В тех моделях, где учитывается поперечное движение, в лучшем случае движение автомобиля рассматривается как плоскопараллельное движение, при котором продольная ось автомобиля остается параллельной относительно продольной оси дороги. Такое упрощение оправдано при решении некоторых задач, таких, как определение скорости сообщения, определение пропускной способности участка дороги, при решении проблем экологии и т. д., потому что значительно упрощает модель и уменьшает объем расчетов. Однако при решении задач оценки уровня безопасности движения такое упрощение не оправдано.

Криволинейное движение автомобиля в рассматриваемой имитационной модели определяется:

координатами расчетной точки автомобиля относительно неподвижной системе координат;

курсовым углом движения автомобиля;

углом поворота управляемых колес автомобиля;

угловой скоростью поворота управляемых колес.

Расчетной точкой, относительно которого производятся все расчеты по определению координат автомобиля, в модели принята середина задней оси автомобиля. В таком случае уравнения, определяющие координаты имеют наименее громоздкий вид.

В модели движение автомобиля рассматривается как чередование прямолинейного движения, кругового движения и криволинейного движения переменного радиуса. Первые два достаточно хорошо описываются сравнительно простыми аналитическими выражениями. Рассмотрим подробней криволинейное движение (рис. 2.4). В дальнейшем будем принимать следующие допущения:

углы поворота обоих управляемых колес автомобиля равны между собой;

у колес автомобиля отсутствует боковой увод;

угловая скорость поворота управляемых колес постоянна;

расчетная точка автомобиля движется с постоянным ускорением;

автомобиль движется на плоскости (плоское движение);

отсутствует буксование колес;

крен автомобиля не влияет на траекторию.

Для оценки уровня безопасности движения первые два допущения мало значимы. Если в процессе движения значение угловой скорости поворота управляемых колес либо ускорение расчетной точки автомобиля существенно изменяется, то траектория автомобиля разбивается

на несколько участков, на каждом из которых значения указанных величин принимается постоянными.

Рис. 2.4

Таким образом, в пределах приемлемой точности вышеуказанные допущения значительно упрощают расчеты.

В работах приводятся уравнения, которые позволяют определить траекторию движения автомобиля. Так, в работе приведены следующие формулы, определяющие курсовой угол и координаты движения середины задней оси автомобиля:

где x в, y в - координаты середины задней оси автомобиля;

C 1 и C 2 - постоянные, определяемые начальными условиями;

Угол поворота управляемых колес автомобиля;

v o - скорость движения автомобиля;

k - угловая скорость поворота управляемых колес автомобиля;

L 0 - база автомобиля;

k p - режимный параметр, характеризующий режим криволинейного движения:

Аналогичные формулы, но относительно движения центра масс автомобиля приведены в работе:

где x ц.м. , y ц.м. - координаты центра масс автомобиля;

C 1 , C 2 , C 3 - постоянные, определяемые начальными условиями;

v a - скорость движения автомобиля;

v y - скорость бокового смещения центра масс автомобиля;

a - угловая скорость продольной оси автомобиля в горизонтальной плоскости.

Траектории точек автомобиля, находящихся на продольной оси, могут быть заданы зависимостью ее кривизны от времени. Однако, моделирование криволинейного движения автомобиля в неподвижной системе координат через x в, и y в, а также угла гораздо удобнее.

В уравнениях (2.23) - (2.26) скорость движения автомобиля предполагается постоянной величиной. В реальном процессе движения автомобиля в транспортном потоке часто сочетаются криволинейное движение с изменением скорости движения. Это происходит, в частности, в следующих ситуациях:

перед остановкой автомобиль одновременно уменьшает скорость движения и криволинейным движением приближается к правой кромке проезжей части;

после трогания с места автомобиль увеличивает скорость движения и по криволинейной траектории приближается к середине полосы движения;

во время обгона, особенно в первой фазе обгона с ожиданием, автомобиль меняет полосу движения и одновременно увеличивает скорость движения;

на перекрестках, после запрещающего сигнала светофора, или после пропуска помехи справа, поворачивающие автомобили двигаются криволинейно и с ускорением и т.д.

Сочетание криволинейного движения с изменением скорости движения является потенциальным источником конфликтных ситуаций, т.к. оно часто заставляет других участников движения изменить режим движения. Криволинейное движение автомобиля обязательно необходимо моделировать с учетом ускорения.

Уравнения, приведенные в разных исследованиях для определения траектории криволинейного движения, чаще всего выражают параметры движения автомобиля в виде дифференциальных уравнений или интегралов. Как правило, подынтегральные выражения имеют сложный аналитический вид и в явном виде не интегрируются. Поэтому, либо такие уравнения решаются численными, приближенными методами с применением компьютеров, либо траектория движения строится графическим или графоаналитическим методом. При решении многих конкретных задач эти методы оказываются целесообразными, особенно первый из них, при помощи которого можно рассчитать траекторию движения практически с любой точностью. Однако это достигается за счет больших затрат машинного времени счета. В течение имитационных экспериментов на задаваемом участке дороги одновременно могут находиться сотни автомобилей, каждый из которых совершает различные маневры, в том числе и криволинейное движение с ускорением. При использовании итерационных методов с целью расчета траектории движения большие затраты машинного времени неизбежны. Это резко замедляет работу имитационной модели в реальном масштабе времени. Поэтому здесь более целесообразным представляется разложение подынтегральных выражений в степенной ряд с требуемой точностью. Далее, после интегрирования полученных многочленов можно получить искомые параметры криволинейного движения в аналитическом виде.

Пусть автомобиль движется с постоянным ускорением a. Тогда выражение (2.23) принимает следующий вид:

Разложим в степенной ряд подынтегральное выражение, содержащееся в правой части (2.30) и возьмем столько членов, сколько требуется для обеспечения необходимой точности. Обозначим

Тогда (2.30) можно переписать в следующем виде:

Приближенные аналитические решения уравнений (2.24) и (2.25) также будем искать, разлагая в степенной ряд функции f()=cos(()) и g()=sin(()), где курсовой угол определяется из выражения (2.31). Производные от упомянутых функций первых нескольких порядков приведены в табл. 2.1.

Пусть в начале криволинейного движения курсовой угол автомобиля 0 =0. Тогда:

Теперь можно определить траекторию движения точки B автомобиля (рис. 2.4). Выражения (2.24) и (2.32) позволяют после интегрирования (2.24) получить

Аналогично, из выражений (2.25) и (2.33) после интегрирования (2.25) можно получить

Выражения (2.34) и (2.35) вполне приемлемы для расчета траектории движения автомобиля, если за время криволинейного движения курсовой угол автомобиля изменяется не более чем на 90°. В реальных дорожных условиях такое изменение практически никогда не превышает

Таблица 2.1

Производные от функций f(и) и g(и) первых нескольких порядков

Порядок производной n

f(n)(и), при и=0

g(n)(и), при и=0

105 B4-588 B2-896 D2

420 B3-272 B+1120 B D2

2520 B3 D+8160 B D

8064 B2 D-2240 D3+2176 D

6300 B4-18960 B2+25200 B2 D2-31104 D2

945 B5+16380 B3-7936 B+57120 B D2

Таблица 2.2

Значения функций f(и) и g(и), описывающие процесс поворота автомобиля ГАЗ-24 при v 0 =10 м/с, k =0,05 рад/с, L 0 =2,8 м, 45°.

г(и), по формуле (2.23), град

f(и), по формуле (2.23)

f(и), по формуле (2.32)

g(и), по формуле (2.23)

g(и), по формуле (2.33)

В табл. 2.2 приведены значения функций f() и g(), которые описывают процесс поворота автомобиля ГАЗ-24 при v 0 =10 м/с, k =0,05 рад/с, L 0 =2,8 м. Вычисления проводились с одной стороны с применением выражения (2.23), а с другой стороны - выражений (2.32) и (2.33). При <90° расхождения в значениях функций не превышает 0,1%, что вполне обеспечивает требуемую точность вычислений.

Координаты любой другой точки E автомобиля (рис. 2.4), находящейся от точки B на расстояниях a и b, соответственно по продольной и поперечной оси автомобиля, можно определить следующим образом:

Рассмотрим, каким образом происходит процесс поворота в имитационной модели в режиме свободного движения. До начала криволинейного движения водитель уменьшает скорость движения до значения базовой скорости свободного движения v св на участке поворота. С такой скоростью он завершает поворот, а после поворота при необходимости опять увеличивает скорость движения. Значение скорости движения v св определяется на основе натурных наблюдений.

Модель процесса поворота представляет собой последовательность трех этапов (рис. 2.5):

водитель с постоянной угловой скоростью р1 вращает рулевое колесо по/против направления часовой стрелки, при правом/левом повороте. Управляемые колеса совершают поворот с угловой скоростью k1 . Автомобиль совершает криволинейное движение. Радиус кривизны траектории движения уменьшается от + до R п (участок E 1);

водитель держит рулевое колесо в неподвижном состоянии. Автомобиль двигается по круговой траектории с постоянным радиусом поворота R п относительно центра поворота С. Этот этап в процессе поворота может отсутствовать (участок E 2);

водитель вращает рулевое колесо в обратном направлении с постоянной угловой скоростью р2 . Управляемые колеса поворачиваются с угловой скоростью k2 . Автомобиль снова движется по криволинейной траектории. Радиус кривизны траектории движения увеличивается от R п до + (участок E 3).

Первая часть неравенства (2.38) объясняется стремлением водителя удержать автомобиль на своей полосе движения. При < S 0min водитель не в состоянии предотвратить выезд автомобиля за пределы своей полосы движения, если ускорение не изменять (если ускорение изменится, то S 0min тоже изменится).

Рис. 2.5 Схема к описанию модели процесса поворота автомобиля

Вторая часть неравенства объясняется тем, что, если в начале поворота > S 0max , и в дальнейшем водитель не изменит параметры движения автомобиля (k и a), то автомобиль либо выедет за пределы проезжей части дороги, либо пересечет биссектрису OC угла ц под острым углом, т.е. в дальнейшем опять-таки выедет за пределы полосы движения. Поэтому, для предотвращения этого, водитель вынужден приближаться к повороту до тех пор, пока не выполнится второе условие неравенства (2.38) и только после этого начинать поворот.

Водитель начинает поворот на некотором расстоянии до центра O перекрестка. является случайной величиной. При принятых выше ограничениях значение величины находится в пределах:

S 0min < < S 0max (2.38)

Угловая скорость поворота управляемых колес k , которая определяется как отношение угловой скорости поворота рулевого колеса р на передаточное число рулевого механизма, рассматривается как случайная величина и определяется следующим образом:

определяется минимальное значение kmin угловой скорости поворота управляемых колес, при котором автомобиль в процессе поворота не выедет за пределы полосы движения с противоположной стороны от центра поворота С (рис. 2.6а);

определяется максимальное значение kmax угловой скорости поворота управляемых колес, при котором автомобиль в процессе поворота не выедет за пределы полосы движения со стороны центра поворота (рис. 2.6б);

определяются значения р min и р max угловой скорости поворота рулевого колеса, соответствующие значениям kmin и kmax ;

между значениями р min и р max генератором случайных чисел по заранее заданному закону распределения разыгрывается случайное число k ", которое и является значением угловой скорости поворота управляемых колес на первом этапе поворота.

Рис. 2.6 Схема к вычислению угловой скорости поворота управляемых колес автомобиля в процессе поворота

Закон распределения случайной величины k ", определяется в результате натурных наблюдений (см. п. 3.2, рис. 3.12). На третьем этапе значение угловой скорости поворота управляемых колес k "" определяется аналогично.

БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

РЕСПУБЛИКАНСКИЙ ИНСТИТУТ ИННОВАЦИОННЫХ ТЕХНОЛОГИЙ

КАФЕДРА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Курсовая работа

Дисциплина «Математическое моделирование»

Тема: «Моделирование движения парашютиста»


Введение

1. Свободное падение тела с учетом сопротивления среды

2. Формулировка математической модели и ее описание.

3. Описание программы исследования с помощью пакета Simulink

4. Решение задачи программным путем

Список использованных источников

Введение

Формулировка проблемы :

Катапульта выбрасывает манекен человека с высоты 5000 метров. Парашют не раскрывается, манекен падает на землю. Оценить скорость падения в момент удара о землю. Оценить время достижения манекеном предельной скорости. Оценить высоту, на которой скорость достигла предельного значения. Построить соответствующие графики, провести анализ и сделать выводы.

Цель работы :

Научиться составлять математическую модель, решать дифференциальные уравнения программными средствами (используется язык технических вычислений MatLAB 7.0, пакет расширения Simulink) и анализировать полученные данные о математической модели.

1. Свободное падение тела с учетом сопротивления среды

При реальных физических движениях тел в газовой или жидкостной среде трение накладывает огромный отпечаток на характер движения. Каждый понимает, что предмет, сброшенный с большой высоты (например, парашютист, прыгнувший с самолета), вовсе не движется равноускоренно, так как по мере набора скорости возрастает сила сопротивления среды. Даже эту, относительно несложную, задачу нельзя решить средствами “школьной” физики: таких задач, представляющих практический интерес, очень много. Прежде чем приступать к обсуждению соответствующих моделей, вспомним, что известно о силе сопротивления.

Закономерности, обсуждаемые ниже, носят эмпирический характер и отнюдь не имеют столь строгой и четкой формулировки, как второй закон Ньютона. О силе сопротивления среды движущемуся телу известно, что она, вообще говоря, растет с ростом скорости (хотя это утверждение не является абсолютным). При относительно малых скоростях величина силы сопротивления пропорциональна скорости и имеет место соотношение, где определяется свойствами среды и формой тела. Например, для шарика - это формула Стокса, где - динамическая вязкость среды, r - радиус шарика. Так, для воздуха при t = 20°С и давлении 1 атм = 0,0182 H.c.м-2 для воды 1,002 H.c.м-2 , для глицерина 1480 H.c.м-2.

Оценим, при какой скорости для падающего вертикально шара сила сопротивления сравняется с силой тяжести (в движение станет равномерным).

(1)

Пусть r= 0,1 м, = 0,8 кг/м (дерево). При падении в воздухе м/с, в воде 17 м/с, в глицерине 0,012 м/с.

На самом деле первые два результата совершенно не соответствуют действительности. Дело в том, что уже при гораздо меньших скоростях сила сопротивления становится пропорциональной квадрату скорости: . Разумеется, линейная по скорости часть силы сопротивления формально также сохранится, но если , то вкладом можно пренебречь (это конкретный пример ранжирования факторов). О величине k2 известно следующее: она пропорциональна площади сечения тела S, поперечного по отношению к потоку, и плотности среды и зависит от формы тела. Обычно представляют k2 = 0,5сS, где с - коэффициент лобового сопротивления - безразмерен. Некоторые значения с (для не очень больших скоростей) приведены на рис.1.

При достижении достаточно большой скорости, когда образующиеся за обтекаемым телом вихри газа или жидкости начинают интенсивно отрываться от тела, значение с в несколько раз уменьшается. Для шара оно становится приблизительно равным 0,1. Подробности можно найти в специальной литературе.

Вернемся к указанной выше оценке, исходя из квадратичной зависимости силы сопротивления от скорости.

для шарика

(3)

Рис 1 . Значения коэффициента лобового сопротивления для некоторых тел, поперечное сечение которых имеет указанную на рисунке форму

Примем r = 0,1 м, =0,8.103 кг/м3 (дерево). Тогда для движения в воздухе (= 1,29 кг/м3) получаем 18 м/с, в воде(= 1.103 кг/м3) 0,65 м/с, в глицерине (= 1,26.103 кг/м3) 0,58 м/с.

Сравнивая с приведенными выше оценками линейной части силы сопротивления, видим, что для движения в воздухе и в воде ее квадратичная часть сделает движение равномерным задолго до того, как это могла бы сделать линейная часть, а для очень вязкого глицерина справедливо обратное утверждение. Рассмотрим свободное падение с учетом сопротивления среды. Математическая модель движения - уравнение второго закона Ньютона с учетом двух сил, действующих на тело: силы тяжести и силы сопротивления среды:

(4)

Движение является одномерным; проецируя векторное уравнение на ось, направленную вертикально вниз, получаем

(5)

Вопрос, который мы будем обсуждать на первом этапе, таков: каков характер изменения скорости со временем, если все параметры, входящие в уравнение (7) заданы? При такой постановке модель носит сугубо дескриптивный характер. Из соображений здравого смысла ясно, что при наличии сопротивления, растущего со скоростью, в какой-то момент сила сопротивления сравняется с силой тяжести, после чего скорость больше возрастать не будет. Начиная с этого момента, , и соответствующую установившуюся скорость можно найти из условия =0, решая не дифференциальное, а квадратное уравнение. Имеем

(6)

(второй - отрицательный - корень, естественно, отбрасываем). Итак, характер движения качественно таков: скорость при падении возрастает от до . Как и по какому закону – это можно узнать, лишь решив дифференциальное уравнение (7).

Однако даже в столь простой задаче мы пришли к дифференциальному уравнению, которое не относится ни к одному из стандартных типов, выделяемых в учебниках по дифференциальным уравнениям, допускающих очевидным образом аналитическое решение. И хотя это не доказывает невозможность его аналитического решения путем хитроумных подстановок, но они не очевидны. Допустим, однако, что нам удастся найти такое решение, выраженное через суперпозицию нескольких алгебраических и трансцендентных функций – а как найти закон изменения во времени перемещения? Формальный ответ прост:

(7)

но шансы на реализацию этой квадратуры уже совсем невелики. Дело в том, что класс привычных нам элементарных функций очень узок, и совершенно обычна ситуация, когда интеграл от суперпозиции элементарных функций не может быть выражен через элементарные функции в принципе. Математики давно расширили множество функций, с которыми можно работать почти так же просто, как с элементарными (т. е. находить значения, различные асимптотики, строить графики, дифференцировать, интегрировать). Тем, кто знаком с функциями Бесселя, Лежандра, интегральными функциями и еще двумя десятками других, так называемых специальных функций, легче находить аналитические решения задач моделирования, опирающихся на аппарат дифференциальных уравнений. Однако даже получение результата в виде формулы не снимает проблемы представления его в виде, максимально доступном для понимания, чувственного восприятия, ибо мало кто может, имея формулу, в которой сопряжены логарифмы, степени, корни, синусы и тем более специальные функции, детально представить себе описываемый ею процесс - а именно это есть цель моделирования.

В достижении этой цели компьютер - незаменимый помощник. Независимо от того, какой будет процедура получения решения - аналитической или численной, - задумаемся об удобных способах представления результатов. Разумеется, колонки чисел, которых проще всего добиться от компьютера (что при табулировании формулы, найденной аналитически, что в результате численного решения дифференциального уравнения), необходимы; следует лишь решить, в какой форме и размерах они удобны для восприятия. Слишком много чисел в колонке быть не должно, их трудно будет воспринимать, поэтому шаг, с которым заполняется таблица, вообще говоря, гораздо больше шага, с которым решается дифференциальное уравнение в случае численного интегрирования, т.е. далеко не все значения и , найденные компьютером, следует записывать в результирующую таблицу (табл. 2).

Таблица 2

Зависимость перемещения и скорости падения от времени (от 0 до 15 с)

t(c) S(m) (м/с) t(c) S(m) (м/с)

Кроме таблицы необходимы графики зависимостей и ; по ним хорошо видно, как меняются со временем скорость и перемещение, т.е. приходит качественное понимание процесса.

Еще один элемент наглядности может внести изображение падающего тела через равные промежутки времени. Ясно, что при стабилизации скорости расстояния между изображениями станут равными. Можно прибегнуть и к цветовой раскраске - приему научной графики, описанному выше.

Наконец, можно запрограммировать звуковые сигналы, которые подаются через каждый фиксированный отрезок пути, пройденный телом - скажем, через каждый метр или каждые 100 метров - смотря по конкретным обстоятельствам. Надо выбрать интервал так, чтобы вначале сигналы были редкими, а потом, с ростом скорости, сигнал слышался все чаще, пока промежутки не сравняются. Таким образом, восприятию помогают элементы мультимедиа. Поле для фантазии здесь велико.

Приведем конкретный пример решения задачи о свободно падающем теле. Герой знаменитого фильма “Небесный тихоход” майор Булочкин, упав с высоты 6000 м в реку без парашюта, не только остался жив, но даже смог снова летать. Попробуем понять, возможно, ли такое на самом деле или же подобное случается только в кино. Учитывая сказанное выше о математическом характере задачи, выберем путь численного моделирования. Итак, математическая модель выражается системой дифференциальных уравнений.

(8)

Разумеется, это не только абстрактное выражение обсуждаемой физической ситуации, но и сильно идеализированное, т.е. ранжирование факторов перед построением математической модели произведено. Обсудим, нельзя ли произвести дополнительное ранжирование уже в рамках самой математической модели с учетом конкретно решаемой задачи, а именно - будет ли влиять на полет парашютиста линейная часть силы сопротивления и стоит ли ее учитывать при моделировании.

Так как постановка задачи должна быть конкретной, мы примем соглашение, каким образом падает человек. Он опытный летчик и наверняка совершал раньше прыжки с парашютом, поэтому, стремясь уменьшить скорость, он падает не “солдатиком”, а лицом вниз, “лежа”, раскинув руки в стороны. Рост человека возьмем средний - 1,7 м, а полуобхват грудной клетки выберем в качестве характерного расстояния - это приблизительно 0,4 м. для оценки порядка величины линейной составляющей силы сопротивления воспользуемся формулой Стокса. Для оценки квадратичной составляющей силы сопротивления мы должны определиться со значениями коэффициента лобового сопротивления и площадью тела. Выберем в качестве коэффициента число с=1,2 как среднее между коэффициентами для диска и для полусферы (выбор дня качественной оценки правдоподобен). Оценим площадь: S = 1,7 ∙ 0,4 = 0,7(м2).

В физических задачах на движение фундаментальную роль играет второй закон Ньютона. Он гласит, что ускорение, с которым движется тело, прямо пропорционально действующей на него силе (если их несколько, то равнодействующей, т.е. векторной сумме сил) и обратно пропорционально его массе:

Так для свободно падающего тела под действием только собственной массы закон Ньютона примет вид:

Или в дифференциальном виде:

Взяв интеграл от этого выражения, получим зависимость скорости от времени:

Если в начальный момент V0 = 0, тогда .

.

Выясним, при какой скорости сравняются линейная и квадратичная составляющие силы сопротивления. Обозначим эту скорость Тогда

Ясно, что практически с самого начала скорость падения майора Булочкина гораздо больше, и поэтому линейной составляющей силы сопротивления можно пренебречь, оставив лишь квадратичную составляющую.

После оценки всех параметров можно приступить к численному решению задачи. При этом следует воспользоваться любым из известных методов интегрирования систем обыкновенных дифференциальных уравнений: методом Эйлера, одним из методов группы Рунге - Кутта или одним из многочисленных неявных методов. Разумеется, у них разная устойчивость, эффективность и т.д. - эти сугубо математические проблемы здесь не обсуждаются.

Вычисления производятся до тех пор, пока не опустится на воду. Примерно через 15 с после начала полета скорость становится постоянной и остается такой до приземления. Отметим, что в рассматриваемой ситуации сопротивление воздуха радикально меняет характер движения. При отказе от его учета график скорости, изображенный на рисунке 2, заменился бы касательной к нему в начале координат.

Рис. 2. График зависимости скорости падения от времени

2. Формулировка математической модели и ее описание

парашютист падение сопротивление математическая модель

При построении математической модели необходимо соблюдение следующих условий:

Манекен массой 50 кг соответственно падают в воздухе с плотностью 1,225 кг/м3;

На движение влияют только силы линейного и квадратичного сопротивления;

Площадь сечения тела S=0.4 м2;

Тогда для свободно падающего тела под действием сил сопротивления закон Ньютона примет вид:

,

где a – ускорение тела, м/с2,

m – его масса, кг,

g – ускорение свободного падения на земле, g = 9,8 м/с2,

v – скорость тела, м/c,

k1 – линейный коэффициент пропорциональности, примем k1 = β = 6πμl (μ – динамическая вязкость среды, для воздуха μ = 0,0182 Н.с.м-2; l – эффективная длина, примем для среднестатистического человека при росте 1,7 м и соответствующем обхвате грудной клетки l = 0,4 м),

k2 – квадратичный коэффициент пропорциональности. K2 = α = С2ρS. В данном случае достоверно можно узнать лишь плотность воздуха, а площадь манекена S и коэффициент лобового сопротивления С2 для него определить сложно, можно воспользоваться полученными экспериментальными данными и принять K2 = α = 0,2.

Тогда получим закон Ньютона в дифференциальном виде:

Тогда можно составить систему дифференциальных уравнений:


Математическая модель при падении тела в гравитационном поле с учетом сопротивления воздуха выражается системой из двух дифференциальных уравнений первого порядка.

3. Описание программы исследования с помощью пакета Simulink

Для имитационного моделирования движения парашютиста в системе MATLAB используем элементы пакета расширения Simulink. Для задания величин начальной высоты - H_n, конечной высоты - H_ k, числа - pi, μ – динамическая вязкость среды - my, обхват - R, массе манекена m, коэффициент лобового сопротивления - c, плотность воздуха - ro, площадь сечения тела - S, ускорение свободного падения - g, начальная скорость - V_n используем элемент Constantнаходящийся в Simulink/Sources(рисунок 3).

Рисунок 3. Элемент Constant


Для операции умножения используем блок Product, находящийся в Simulink/MathOperations/Product (рисунок 4).

Рисунок. 4

Для ввода k1 – линейного коэффициента пропорциональности и k2 – квадратичного коэффициента пропорциональности используем элемент Gain, находящийся в Simulink/MathOperations/Gain(Рисунок. 5.)

Рисунок. 5

Для интегрирования – элемент Integrator. Находящийсяв Simulink/Continuous/Integrator. Рисунок. 6.

Рисунок. 6

Для вывода информации используем элементы Display и Scope. Находящиеся в Simulink/Sinks. (Рисунок. 7)


Рисунок. 7

Математическая модель для исследования с использованием вышеперечисленных элементов, описывающая последовательный колебательный контур приведена на рисунке 8.

Рисунок. 8

Программа исследований

1. Исследование графика зависимости высоты от времени и скорости от времени масса парашютиста равна 50кг.


Рисунок 9

Из графиков видно, что при расчете падения парашютиста массой 50 кг, следующие данные: максимальная скорость равна 41,6 м/с и время равно 18с, и должна достигаться через 800 м падения, т.е. в нашем случае на высоте около 4200 м.


Рисунок. 10

2. Исследование графика зависимости высоты от времени и скорости от времени масса парашютиста равна 100кг.


Рисунок 11


Рисунок 12

С массой парашютиста 100 кг.: максимальная скорость равна 58 м/с и время равно 15с, и должна достигаться через 500 м падения, т.е. в нашем случае на высоте около 4500 м. (рисунок. 11., рисунок. 12).

Выводы по полученным данным, которые справедливы для манекенов, отличающихся только массой, но с одинаковыми размерами, формой, типом поверхности и другими параметрами, определяющими внешний вид объекта.

Легкий манекен при свободном падении в гравитационном поле с учетом сопротивления среды достигает меньшей предельной скорости, но за меньший промежуток времени и, естественно, при одинаковой начальной высоте – в более низкой точке траектории, чем тяжелый манекен.

Чем тяжелее манекен, тем быстрее он достигнет земли.

4. Решение задачи программным путем

%Функция моделирования движения парашютиста

function dhdt=parashut(t,h)

global k1 k2 g m

% система ДУ первого порядка

dhdt(1,1)= -h(2);

% Моделирование движения парашютиста

% Васильцов С. В.

global h0 g m k1 k2 a

% k1-линейный коэффициент пропорциональности, определяющийся свойствами среды и формой тела. Формула Стокса.

k1=6*0.0182*0.4;

%k2-квадратичный коэффициент пропорциональности, пропорционален площади сечения тела, поперечного по

%отношения к потоку, плотности среды и зависит от формы тела.

k2=0.5*1.2*0.4*1.225

g=9.81; % ускорение свободного падения

m=50; % масса манекена

h0=5000; % высота

Ode45(@parashut,,)

r=find(h(:,1)>=0);

a=g-(k1*-h(:,2)+k2*h(:,2).*h(:,2))/m % вычисляемускорение

% Построение графика зависимости высоты от времени

subplot(3,1,1), plot(t,h(:,1),"LineWidth",1,"Color","r"),grid on;

xlabel("t, c"); ylabel("h(t), m");

title("Графикзависимостивысотыотвремени", "FontName", "Arial","Color","r","FontWeight","bold");

legend("m=50 kg")

% Построение графика зависимости скорости от времени

subplot(3,1,2), plot(t,h(:,2),"LineWidth",1,"Color","b"),grid on;

ylabel("V(t), m/c");

Title("Графикзависимостискоростиотвремени", "FontName", "Arial","Color","b","FontWeight","bold");

legend("m=50 kg")

% Построение графика зависимости ускорения от времени

subplot(3,1,3), plot(t,a,"-","LineWidth",1,"Color","g"),grid on;

text (145, 0,"t, c");

ylabel("a(t), m/c^2");

Title("Графикзависимостиускоренияотвремени", "FontName", "Arial","Color","g","FontWeight","bold");

legend("m=50 kg")


Экранная форма вывода графиков.



1. Вся физика. Е.Н. Изергина. – М.: ООО «Издательство «Олимп», 2001. – 496 с.

2. Касаткин И. Л. Репетитор по физике. Механика. Молекулярная физика. Термодинамика/ Под ред. Т. В. Шкиль. – Ростов Н/Д: изд-во «Феникс», 2000. – 896 с.

3. Компакт-диск «Самоучитель MathLAB». ООО «Мультисофт», Россия, 2005.

4. Методические указания к Курсовой работе: дисциплина Математическое моделирование. Движение тела при учете сопротивления среды. – Минск. РИИТ БНТУ. Кафедра ИТ, 2007. – 4 с.

5. Решение систем дифференциальных уравнений в Matlab. Дубанов А.А. [Электронный ресурс]. – Режим доступа: http://rrc.dgu.ru/res/exponenta/ educat/systemat/dubanov/index.asp.htm;

6. Энциклопедия д.д. Физика. Т. 16. Ч.1. с. 394 – 396. Сопротивление движению и силы трения. А. Гордеев. /Глав. ред. В.А. Володин. – М. Аванта+, 2000. – 448 с.

7. MatlabFunctionReference [Электронный ресурс]. – Режим доступа: http://matlab.nsu.ru/Library/Books/Math/MATLAB/help/techdoc/ref/.

Продолжаем серию статей по автоматизации выполнения фигур пилотажа на малом ДПЛА. Настоящая статья имеет, прежде всего, образовательную цель: здесь мы покажем, как можно создать простейшую систему автоматического управления (САУ) на примере задачи выполнения фигуры пилотажа «бочка» при управлении летательным аппаратом только элеронами. Статья является второй в цикле публикаций «Пилотажный ДПЛА», рассказывающем о процессе постройки аппаратной и программной частей САУ в обучающей форме.

Введение

Итак, мы решили реализовать «бочку» в автоматическом режиме. Очевидно, что для автоматического выполнения фигуры необходимо сформулировать соответствующий закон управления. Процесс придумывания будет гораздо безболезненнее и быстрее, если использовать математическую модель движения ЛА. Проверка закона управления в лётном эксперименте хоть и возможна, но требует гораздо большего времени, к тому же может оказаться гораздо дороже в случае потери или повреждения аппарата.

Так как при небольших углах атаки и скольжения самолёта его движение по крену практически не связано с движением в двух других каналах: путевом и продольном - для выполнения простой «бочки» достаточно будет построить модель движения только вокруг одной оси - оси ОХ связанной СК. По этой же причине, закон управления элеронами не будет существенно изменяться, когда дело дойдет до создания полной системы управления.

Модель движения

Уравнение движения ЛА вокруг продольной оси ОХ связанной СК крайне простое:

Где - момент инерции относительно оси ОХ , а момент состоит из нескольких составляющих, из которых для реалистичного описания движения нашего самолёта достаточно рассмотреть только две:

Где - момент, обусловленный вращением ЛА вокруг оси ОХ (демпфирующий момент), - момент, обусловленный отклонением элеронов (управляющий момент). Последнее выражение записано в линеаризованной форме: момент крена линейно зависит от угловой скорости и угла отклонения элеронов с постоянными коэффициентами пропорциональности и соответственно.

Как известно (например, из Вики), линейному дифференциальному уравнению

Соответствует апериодическое звено первого порядка

Где - передаточная функция, - оператор дифференцирования, - постоянная времени, а - коэффициент усиления.

Как перейти от дифференциального уравнения к передаточной функции?

В нашем случае от параметров уравнения к параметрам передаточной функции можно перейти следующим образом (зная, что производная отрицательная):




Для апериодического звена постоянная времени равна времени, за которое выходная величина при единичном ступенчатом воздействии входной величины принимает значение, отличающееся от установившегося на величину ~5%, а коэффициент усиления численно равен установившемуся значению выходной величины при единичном ступенчатом воздействии:


В построенной модели движения есть два неизвестных параметра: коэффициент усиления и постоянная времени . Эти параметры выражаются через характеристики физической системы: момент инерции , а также производные момента крена и :

Таким образом, если известен момент инерции , то, определив параметры модели, по ним можно восстановить параметры системы.

Параметры модели. Момент инерции

Наш летательный аппарат состоит из следующих частей: крыло, фюзеляж с оперением, двигатель, аккумулятор (АКБ) и БРЭО:

К БРЭО относятся: плата автопилота, плата приёмника СНС, плата радиомодема, плата приёмника сигнала от управляющей аппаратуры, два регулятора напряжения, регулятор оборотов двигателя, а также соединительные провода.

В силу малого веса БРЭО, его вкладом в общий момент инерции можно пренебречь.

Как проводилась оценка величины момента инерции?

Оценку момента инерции можно провести следующим образом. Посмотрим на самолёт вдоль оси ОХ :

А затем представим его в виде следующей упрощённой модели:


Схема для расчёта момента инерции . Слева вверху - аккумулятор, справа внизу - двигатель. Двигатель и аккумулятор располагаются на оси фюзеляжа

Видно, что для создания модели были отброшены: киль, горизонтальное оперение, винт, а также БРЭО. При этом остались: фюзеляж, крыло, аккумулятор, двигатель. Измерив массы и характерные размеры каждой части, можно вычислить моменты инерции каждой части относительно продольной оси фюзеляжа:


Общее значение момента инерции ЛА относительно оси ОХ получим сложением моментов инерции частей:

Оценив вклад каждой из частей ЛА в общий момент инерции , получилось следующее:

  • крыло - 96.3%,
  • фюзеляж - 1.6 %,
  • двигатель и аккумулятор - 2%,
Видно, что основной вклад в общий момент инерции вносит крыло. Это связано с тем, что крыло имеет довольно большой поперечный размер (размах крыла - 1 м):

Поэтому, несмотря на скромный вес (около 20% от общей взлётной массы ЛА), крыло имеет значительный момент инерции.

Параметры модели. Производные момента крена и

Вычисление производных момента крена – довольно трудная задача, связанная с расчётом аэродинамических характеристик ЛА численными методами или с помощью инженерных методик. Применение первых и вторых требует значительных временных, интеллектуальных и вычислительных затрат, которые оправданы при разработке систем управления большими самолётами, где стоимость ошибки всё же превышает затраты на построение хорошей модели. Для задачи управления БПЛА, масса которого не превосходит 2 кг, такой подход вряд ли оправдан. Другой способ вычисления этих производных - лётный эксперимент. Учитывая дешевизну нашего самолёта, а также близость подходящего поля для проведения такого эксперимента, для нас выбор был очевиден.

Записав в автопилот прошивку для ручного управления и регистрации параметров, мы собрали самолёт и подготовили его к испытаниям:

В лётном эксперименте удалось получить данные по углу отклонения элеронов и угловой скорости вращения ЛА. Пилот управлял самолётом в ручном режиме, выполняя полёт по кругу, развороты и «бочки», а бортовое оборудование регистрировало и отправляло необходимую информацию на наземную станцию. В результате были получены необходимые зависимости: (град/с) и (б/р). Величина представляет собой нормированный угол отклонения элеронов: значение 1 соответствует максимальному отклонению, а значение −1 - минимальному:

Как теперь определить и из полученных данных? Ответ - измерить параметры переходного процесса по графикам и .

Как определялись коэффициенты k и T?

Коэффициент усиления определялся путём отнесения величины установившегося значения угловой скорости к величине отклонения элерона:


Зависимости угла отклонения элеронов и угловой скорости крена от времени, полученные в лётном эксперименте

На предыдущем рисунке участкам установившегося значения угловой скорости приблизительно соответствуют, например, отрезки вблизи моментов времени 422, 425 и 438 с (отмечены тёмно-красным на рисунке).
Постоянная времени определялась из тех же графиков. Для этого найдены участки резкого изменения угла отклонения элерона, а затем измерено время, за которое угловая скорость принимает значение, отличающееся от установившегося значения на 5%.


Результат определения значений постоянной времени и коэффициента усиления следующий: , . Этим значениям коэффициентов при известном значении момента инерции соответствуют следующие значения производных момента крена:

Верификация модели

Итак, построив модель, основой которой является апериодическое звено

Можно провести её верификацию, подав на вход сигнал , полученный из лётного эксперимента, и сравнить выходной сигнал модели с величиной , также полученной в эксперименте.

Как проводилось моделирование?

Инструмент для проведения моделирования мы выбирали, прежде всего, основываясь на возможности повторения результатов широким кругом читателей: это прежде всего означает, что программа должна быть в общественном доступе. В принципе задачу моделирования поведения апериодического звена первого порядка можно решить и создав свой собственный инструмент с нуля. Но так как в дальнейшем модель будет усложняться, то создание своего инструмента может отвлечь от основной задачи - создания САУ пилотажного ДПЛА. С учётом принципа открытости инструмента мы выбрали JSBsim .

В предыдущем разделе мы получили значения коэффициентов и . Используем их для моделирования движения самолета. Из прошлой статьи мы помним, что конфигурация модели самолета в JSBsim задается при помощи XML файла. Создадим собственную модель:
0.2 1.0 0.2 0.03 0.5 0.03 0.5 -0.025 0 0.05 0.018 0.018 0.018 1.2 0 0 0 fcs/aileron-cmd-norm -1 1 Roll_moment_due_to_roll_rate velocities/p-aero-rad_sec -0.24 Roll_moment_due_to_aileron fcs/aileron-cmd-norm 2.4 Velocities/vc-kts Aero/alphadot-deg_sec Aero/betadot-deg_sec Fcs/throttle-cmd-norm OFF OFF OFF ON ON ON OFF OFF ON OFF OFF ON OFF
Так как мы строим модель движения аппарата только по крену, оставим многие из секций файла пустыми. В файле модели последовательно задаются следующие характеристики.

Геометрические размеры самолёта задаются в секции metrics : площадь крыла, размах, длина средней аэродинамической хорды, площадь горизонтального оперения, плечо горизонтального оперения, площадь вертикального оперения, плечо вертикального оперения, положение аэродинамического фокуса.

Массовые характеристики самолёта задаются в секции mass_balance : тензор инерции самолета, вес пустого самолета, положение центра масс.

Стоит отметить, что абсолютные положения аэродинамического фокуса и центра масс самолета не участвуют в расчете динамики аппарата, важно их относительное расположение.
Далее следуют секции, описывающие характеристики шасси самолета и его силовой установки.

В следующей секции, ответственной за систему управления , заполним канал, ответственный за управление по крену: укажем единственный вход fcs/aileron-cmd-norm , величина которого будет нормирована от -1 до 1.

Аэродинамические характеристики задаются в секции aerodynamics : силы задаются в скоростной системе координат, моменты - в связанной. Нас интересует момент по крену. В секции axis name=«ROLL» задаются функции, которые определяют момент сил от различных составляющих проекции момента аэродинамических сил на ось OX связанной системы координат. В нашей модели таких составляющих две. Первая составляющая - демпфирующий момент, который равен произведению угловой скорости на определенный ранее коэффициент . Вторая составляющая - это момент от элеронов при фиксированной скорости полёта: он равен произведению ранее определенного коэффициента на величину отклонения элеронов.

Стоит отметить, что при определении коэффициента была использована размерная величина . В наших полетных данные величина угловой скорости измерялась в градусах в секунду, тогда как в JSBSim используются радианы в секунду, поэтому коэффициент должен быть приведен к нужной нам размерности, т. е. разделен на 180 градусов и умножен на радиан. Записываем эти составляющие момента аэродинамических сил внутри функций произведения product . При моделировании результат выполнения всех функций суммируется и получается значение проекции аэродинамического момента на соответствующую ось.

Проверить созданную модель можно на экспериментальных данных, полученных при лётных испытаниях. Для этого создаем скрипт следующего содержания:
sim-time-sec ge 0.0 Provide a time history input for the aileron sim-time-sec ge 0

sim-time-sec 0 0.00075 0.1 0.00374 0.2 -0.00075 0.3 -0.00075 0.4 -0.00075 0.5 -0.00075 0.6 0.00075 0.7 0.00075 ... 48.8 -0.00075 48.9 0.00000 49 -0.00075

где точками обозначены пропущенные данные. В знакомом нам по предыдущей статье файле скрипта появился новый тип события («Time Notif» ), который позволяет задавать непрерывное изменение параметра по времени. Зависимость параметра от времени задана табличной функцией. JSBSim линейно интерполирует значение функции между табличными данными. Процедура верификации модели движения по крену заключается в исполнении данного скрипта на созданной модели и сравнения результатов с экспериментальными.


Результат верификации показан на рисунке:


Как видно из рисунка, совпадение модели с реальностью чуть менее, чем полное.

Синтез управления для выполнения «бочки»

Получив модель, несложно определить, на какую величину и как долго необходимо отклонять элероны, чтобы выполнить «бочку». Одним из вариантов является следующий алгоритм отклонения:



Наличие отрезков длительностью по 0.1 с в начале и в конце алгоритма отклонения элеронов моделирует инертность сервопривода, который не может отклонить поверхности мгновенно. Модель показывает, что при таком законе отклонения элеронов ЛА должен выполнить один полный оборот вокруг оси ОХ , проверим?

Лётный эксперимент

Полученный закон управления элеронами был запрограммирован в автопилот, установленный на самолёт. Идея эксперимента проста: вывести самолёт в горизонтальный полёт, после чего задействовать полученный закон управления. В случае если реальное движение ЛА по крену соответствует созданной модели, то самолёт должен выполнить «бочку» - один полный оборот на 360 градусов.

Отдельно выражаем благодарность нашему верному пилоту за труд, профессионализм и удобный багажник на приоре-универсал!

В процессе проведения эксперимента стало ясно, что модель движения по крену была построена удачно - самолёт выполнял одну «бочку» за другой, как только пилот задействовал запрограммированный закон управления. На следующем рисунке показана угловая скорость , записанная в процессе эксперимента, и полученная по результатам моделирования, а также угол крена и тангажа из лётного эксперимента:


А на следующем рисунке показаны зарегистрированные в лётном эксперименте сигналы на элероны, руль высоты (РВ) и руль направления (РН):


Вертикальными линиями обозначены моменты начала и окончания выполнения «бочки». Из рисунков видно, что в процессе выполнения «бочки» пилот не вмешивается в управление рулём высоты и рулём направления, также видно, что угол тангажа неизменно стремится уменьшиться при выполнении «бочки» - самолёт затягивает в пикирование, как это и было предсказано по результатам моделирования в авиасимуляторе (см. статью «Пилотажный ДПЛА. Как правильно сделать бочку»). Если внимательно рассмотреть предыдущие графики, то станет видно, что третья «бочка» даже не была закончена, потому что пилот вмешался в управление, чтобы вывести самолёт из пикирования: настолько сильно изменяется угол тангажа при выполнении «бочки» одними элеронами.

Замечания

Выводы

В результате проведённой работы мы показали один из способов создания модели движения ДПЛА по угловой скорости . В лётном эксперименте было доказано, что созданная модель движения вполне соответствует моделируемому объекту. На основании разработанной модели получен закон программного управления, позволяющий выполнять «бочку» в автоматическом режиме. Также мы убедились, что выполнить правильную «бочку» одними элеронами не получится, а также наглядно это продемонстрировали.

Следующим этапом будет доработка закона управления путём добавления обратной связи, а также включение в управление руля высоты. Последнее потребует создание модели продольного движения нашего самолёта. По результатам работы выйдет следующая публикация.

Движение автомобиля рассматривается как плоскопараллельное движение твердого тела по горизонтальной поверхности (рис. 1). В общем случае движение автомобиля описывается следующей системой дифференциальных уравнений:

где - вектор ускорения центра масс автомобиля; m - масса автомобиля; fi - вектор силы сопротивления прямолинейному движению i-го колеса; i - вектор взаимодействия с грунтом i-го колеса; w - вектор силы сопротивления воздуха; J z - момент инерции автомобиля относительно оси z; M nki - момент сопротивления повороту i-го колеса.

Ускорение определяется как

где dV/dt - относительная производная скорости центра масс автомобиля. Проекции скоростей в координатах x`, y`, z`:

Учитывая, что:

можно записать следующую систему уравнений:

Данную систему уравнений решим с помощью пакета DEE (Differential Equation Editor) входящего в состав Simulink. Для этого записываем уравнения в нормальной форме Коши и настраиваем входные данные:

Рисунок 6. Решатель систем дифференциальных уравнений

Входными данными будут являться выходы с предыдущих блоков. Общий вид модели представлен на следующем рисунке:


Рисунок 7. Модель транспортного средства с колесной формулой 4х4

Результаты моделирования представим графически:

Рисунок 8. Траектория движения автомобиля

Результаты моделирования представляют собой траекторию движения автомобиля в форме окружности, что говорит об адекватности данной модели. Данная работа может послужить фундаментом для дальнейших перспективных исследований в области разработки систем автоматического управления движением автомобиля, в том числе систем активной безопасности.

 

Возможно, будет полезно почитать: